See-Liu-Manning Text Summarization Task

From GM-RKB
Jump to navigation Jump to search

A See-Liu-Manning Text Summarization Task is an Abstractive Text Summarization Task that uses a pointer-generator model to produce summary from textual data.

ROUGE METEOR
1 2 L exact match + stem/syn/para
abstractive model (Nallapati et al., 2016)* 35.46 13.30 32.65 - -
seq-to-seq + attn baseline (150k vocab) 30.49 11.17 28.08 11.65 12.86
seq-to-seq + attn baseline (50k vocab) 31.33 11.81 28.83 12.03 13.20
pointer-generator 36.44 15.66 33.42 15.35 16.65
pointer-generator + coverage 39.53 17.28 36.38 17.32 18.72
lead-3 baseline (ours) 40.34 17.70 36.57 20.48 22.21
lead-3 baseline (Nallapati et al., 2017)* 39.2 15.7 35.5 - -
extractive model (Nallapati et al., 2017)* 39.6 16.2 35.3 - -


References

2017

2016

2015

2014

2004