MaskGAN Benchmark Task

From GM-RKB
Jump to navigation Jump to search

A MaskGAN Benchmark Task is an Automatic Text Generation Task that uses Generative Adversarial Network and Masked Sequences to generate text items.

Model Perplexity of IMDB samples under a pretrained LM
MaskMLE $273.1 \pm 3.5$
MaskGAN $108.3 \pm 3.5$
Model Unique bigrams % Unique trigrams % Unique quadgrams
LM 40.6 75.2 91.9
MaskMLE 43.6 77.4 92.6
MaskGAN 38.2 70.7 88.2
Table 6: Diversity statistics within 1000 unconditional samples of PTB news snippets (20 words each).
Preferred Model Grammaticality % Topicality % Overall %
LM 15.3 19.7 15.7
MaskGAN 59.7 58.3 58.0
LM 20.0 28.3 21.7
MaskMLE 42.7 43.7 40.3
MaskGAN 49.7 43.7 44.3
MaskMLE 18.7 20.3 18.3
Real samples 78.3 72.0 73.3
LM 6.7 7.0 6.3
Real samples 65.7 59.3 62.3
MaskGAN 18.0 20.0 16.7
Preferred Model Grammaticality % Topicality % Overall %
LM 32.0 30.7 27.3
MaskGAN 41.0 39.0 35.3
LM 32.7 34.7 32.0
MaskMLE 37.3 33.3 31.3
MaskGAN 44.7 33.3 35.0
MaskMLE 28.0 28.3 26.3
SeqGAN 38.7 34.0 30.7
MaskMLE 33.3 28.3 27.3
SeqGAN 31.7 34.7 32.0
MaskGAN 43.3 37.3 37.0


References

2018

2015a

2015b

1999