Standard Statistical Model
Jump to navigation
Jump to search
A Standard Statistical Model is a Statistical Model that is either a Discrete Statistical Model or a Continuous Statistical Model.
- See: Probability Function.
References
2008
- (Georgii, 2008) ⇒ Hans-Otto Georgii. (2008). “Stochastics: introduction to probability theory and statistics." Walter de Gruyter. ISBN:3110191458,
- (a) A statistical model [math]\displaystyle{ M }[/math] = (X [math]\displaystyle{ F }[/math], Pv : [math]\displaystyle{ v }[/math] ∈ ϴ) is called a parametric model if ϴ ⊂
R
d for some [math]\displaystyle{ d }[/math] ∈N
. For [math]\displaystyle{ d }[/math]=1, [math]\displaystyle{ M }[/math] is called a one-parameter model. - (b) [math]\displaystyle{ M }[/math] is called a discrete model if [math]\displaystyle{ X }[/math] is discrete (i.e. at most countable), and ... [math]\displaystyle{ M }[/math] is called a continuous model iff [math]\displaystyle{ X }[/math] is a Borel subset of ... If either of these two cases applies, we say that [math]\displaystyle{ M }[/math] is a standard model.
- (a) A statistical model [math]\displaystyle{ M }[/math] = (X [math]\displaystyle{ F }[/math], Pv : [math]\displaystyle{ v }[/math] ∈ ϴ) is called a parametric model if ϴ ⊂