Squared Error Function
Jump to navigation
Jump to search
A Squared Error Function is a squaring function of an estimator's error.
- Context:
- It can range from being Mean Squared Error to being Median Squared Error to being ...
- Example(s):
- See: Error, Mean Squared Error.
References
2014
- (Wikipedia, 2014) ⇒ http://en.wikipedia.org/wiki/K-means_clustering#Description Retrieved:2014-10-20.
- Given a set of observations (x1, x2, …, xn), where each observation is a d-dimensional real vector, k-means clustering aims to partition the n observations into k (≤ n) sets S = {S1, S2, …, Sk} so as to minimize the within-cluster sum of squares (WCSS). In other words, its objective is to find: [math]\displaystyle{ \underset{\mathbf{S}} {\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{\mathbf x \in S_i} \left\| \mathbf x - \boldsymbol\mu_i \right\|^2 }[/math] where μi is the mean of points in Si.
2011
- (Sammut & Webb, 2011) ⇒ Claude Sammut, and Geoffrey I. Webb. (2011). “Squared Error.” In: (Sammut & Webb, 2011) p.912
- (Sammut & Webb, 2011) ⇒ Claude Sammut (editor), and Geoffrey I. Webb (editor). (2011). “Error Squared.” In: (Sammut & Webb, 2011) p.331