Similarity-Analogy-Relatedness for Tartar Language (SART) Dataset
Jump to navigation
Jump to search
A Similarity-Analogy-Relatedness for Tartar Language (SART) Dataset is a Benchmark Dataset that can be used in Word Embedding Benchmark and Semantic Word Similarity Benchmark Tasks.
- AKA: SART Dataset.
- Context:
- Website: https://github.com/tat-nlp/SART
- It was first introduced by Khusainova et al. (2019).
- It is based on WordSim-353 Dataset.
- Example(s):
- Counter-Example(s):
- See: Training Dataset, Semantic Word Similarity Measure, Semantic Word Similarity System, SemEval-2017 Task 2, Reading Comprehension Dataset, Question-Answer Dataset.
References
2019
- (Khusainova et al., 2019) ⇒ Albina Khusainova, Adil Khan, and Adin Ramirez Rivera (2019). "SART - Similarity, Analogies, and Relatedness for Tatar Language: New Benchmark Datasets for Word Embeddings Evaluation". In: arXiv:1904.00365
2002
- (Finkelstein et al., 2002) ⇒ Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan Ruppin (2002). "Placing Search in Context: The Concept Revisited". In: ACM Transactions on Information Systems (TOIS), Volume 20.