Session-Aware Recommendation Algorithm

From GM-RKB
Jump to navigation Jump to search

A Session-Aware Recommendation Algorithm is a data-driven recommendation algorithm that accounts for user session data.



References

2017

2016

  • (Hidasi et al., 2016) ⇒ Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. (2016). “Session-based Recommendations with Recurrent Neural Networks.” In: ICLR-2016
    • ABSTRACT: We apply recurrent neural networks (RNN) on a new domain, namely recommender systems. Real-life recommender systems often face the problem of having to base recommendations only on short session-based data (e.g. a small sportsware website) instead of long user histories (as in the case of Netflix). In this situation the frequently praised matrix factorization approaches are not accurate. This problem is usually overcome in practice by resorting to item-to-item recommendations, i.e. recommending similar items. We argue that by modeling the whole session, more accurate recommendations can be provided. We therefore propose an RNN-based approach for session-based recommendations. Our approach also considers practical aspects of the task and introduces several modifications to classic RNNs such as a ranking loss function that make it more viable for this specific problem. Experimental results on two data-sets show marked improvements over widely used approaches.