Secondary Metabolite
Jump to navigation
Jump to search
A Secondary Metabolite is an Organic Compound that ...
- Example(s):
- a Flavanoid Molecule.
- …
- Counter-Example(s):
- See: Milkweed, Biological Development, Reproduction, Survivability, Fecundity, Phylogenetic, Plant Defense Against Herbivory, Herbivore.
References
2018
- (Wikipedia, 2018) ⇒ https://en.wikipedia.org/wiki/secondary_metabolite Retrieved:2018-10-20.
- Secondary metabolites are organic compounds produced by bacteria, fungi, or plants which are not directly involved in the normal growth, development, or reproduction of the organism. Unlike primary metabolites, absence of secondary metabolites does not result in immediate death, but rather in long-term impairment of the organism's survivability, fecundity, or aesthetics, or perhaps in no significant change at all. Specific secondary metabolites are often restricted to a narrow set of species within a phylogenetic group. Secondary metabolites often play an important role in plant defense against herbivory and other interspecies defenses. Humans use secondary metabolites as medicines, flavorings, pigments, and recreational drugs. Secondary metabolites aid a host in important functions such as protection, competition, and species interactions, but are not necessary for survival. One important defining quality of secondary metabolites is their specificity. Usually, secondary metabolites are specific to an individual species, [1] though there is considerable evidence that horizontal transfer across species or genera of entire pathways plays an important role in bacterial (and, likely, fungal) evolution. Research also shows that secondary metabolic can affect different species in varying ways. In the same forest, four separate species of arboreal marsupial folivores reacted differently to a secondary metabolite in eucalypts.[2] This shows that differing types of secondary metabolites can be the split between two herbivore ecological niches. Additionally, certain species evolve to resist secondary metabolites and even use them for their own benefit. For example, monarch butterflies have evolved to be able to eat milkweed (Asclepias) despite the toxic secondary metabolite it contains.[3] This ability additionally allows the butterfly and caterpillar to be toxic to other predators due to the high concentration of secondary metabolites consumed.
- ↑ Pichersky, E. & Gang, D.R. (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends in plant science, 5, 439-445.
- ↑ Jensen, L.M., Wallis, I.R., Marsh, K.J., Moore, B.D., Wiggins, N.L., & Foley, W.J. (2014) Four species of arboreal folivore show differential tolerance to a secondary metabolite. Oecologia, 176, 251-258.
- ↑ Croteau, R., Kutchan, T. M., & Lewis, N. G. (2000). Natural products (secondary metabolites). Biochemistry and molecular biology of plants, Ch. 24, 1250-1319.