SLIF System

From GM-RKB
Jump to navigation Jump to search

The SLIF System is a Computing System that can find fluorescence microscope images in on-line journal articles, and indexes them according to cell line, proteins visualized, and resolution.



References

  • http://murphylab.web.cmu.edu/services/SLIF2/
    • SLIF finds fluorescence microscope images in on-line journal articles, and indexes them according to cell line, proteins visualized, and resolution. Images can be accessed via the SLIF Web database.
  • R. F. Murphy, M. Velliste, J. Yao, and G. Porreca (2001). Searching Online Journals for Fluorescence Microscope Images Depicting Protein Subcellular Location Patterns. Proceedings of the 2nd IEEE International Symposium on Bio-Informatics and Biomedical Engineering (BIBE 2001), pp. 119-128.
  • William W. Cohen, Richard Wang, and Robert Murphy (2003). Understanding Captions in Biomedical Publications. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp. 499-504.
  • William W. Cohen, Zhenzhen Kou, and Robert F. Murphy (2003). Extracting Information from Text and Images for Location Proteomics. Proceedings of the 3nd ACM SIGKDD Workshop on Data Mining in Bioinformatics (BIOKDD 2003), pp. 2-9.
  • Robert F. Murphy, Zhenzhen Kou, Juchang Hua, Matthew Joffe, and William W. Cohen (2004). Extracting and Structuring Subcellular Location Information from On-line Journal Articles: The Subcellular Location Image Finder Proceedings of IASTED International Conference on Knowledge Sharing and Collaborative Engineering (KSCE-2004).
  • Z. Kou, W.W. Cohen, and R.F. Murphy (2005). High-recall protein entity recognition using a dictionary. Bioinformatics 21(suppl_1):i266-i273 (Proceedings of the 13th Annual International Conference on Intelligent Systems for Molecular Biology).
  • Z. Kou, W.W. Cohen, and R.F. Murphy (2007). A Stacked Graphical Model for Associating Information from Text and Images in Figures. Pacific Symposium on Biocomputing 12:257-268.
  • J. Hua, O.N. Ayasli, W.W. Cohen, and R.F. Murphy (2007). Identifying Fluorescence Microscope Images in Online Journal Articles Using Both Image and Text Features. Proceedings of the 2007 IEEE International Symposium on Biomedical Imaging (ISBI 2007), pp. 1224-1227.
  • Y. Qian and R.F. Murphy (2008). Improved Recognition of Figures containing Fluorescence Microscope Images in Online Journal Articles using Graphical Models. Bioinformatics 24:569-576.