Rotation Forests System

From GM-RKB
Jump to navigation Jump to search

A Rotation Forests System is a decision tree ensemble learning system that applies a Rotation Forests Learning Algorithm to solve a Rotation Forests Learning Task.



References

2017a

2017b

  • (Wikipedia, 2017) ⇒ https://en.wikipedia.org/wiki/Decision_tree_learning#Decision_tree_types Retrieved:2017-10-15.
    • (...) Some techniques, often called ensemble methods, construct more than one decision tree:
      • Boosted trees Incrementally building an ensemble by training each new instance to emphasize the training instances previously mis-modeled. A typical example is AdaBoost. These can be used for regression-type and classification-type problems. [1] [2]
      • Bootstrap aggregated (or bagged) decision trees, an early ensemble method, builds multiple decision trees by repeatedly resampling training data with replacement, and voting the trees for a consensus prediction. [3]
      • Rotation forest - in which every decision tree is trained by first applying principal component analysis (PCA) on a random subset of the input features. [4]

        A special case of a decision tree is a decision list, which is a one-sided decision tree, so that every internal node has exactly 1 leaf node and exactly 1 internal node as a child (except for the bottommost node, whose only child is a single leaf node). While less expressive, decision lists are arguably easier to understand than general decision trees due to their added sparsity, permit non-greedy learning methods and monotonic constraints to be imposed.


  1. Friedman, J. H. (1999). Stochastic gradient boosting. Stanford University.
  2. Hastie, T., Tibshirani, R., Friedman, J. H. (2001). The elements of statistical learning : Data mining, inference, and prediction. New York: Springer Verlag.
  3. Breiman, L. (1996). Bagging Predictors. “Machine Learning, 24": pp. 123-140.
  4. Rodriguez, J.J. and Kuncheva, L.I. and Alonso, C.J. (2006), Rotation forest: A new classifier ensemble method, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1619-1630.