Rohini K Srihari
Jump to navigation
Jump to search
Rohini K Srihari is a person.
- AKA: Rohini Srihari, R. K. Srihari.
- See: Information Extraction Algorithm, Opinion Mining Algorithm, OpinionMiner System.
References
- DBLP http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Srihari:Rohini_K=.html
- Personal Homepage: http://www.cedar.buffalo.edu/~rohini/
2009
- (Jin et al., 2009) ⇒ Wei Jin, Hung Hay Ho, Rohini K Srihari. (2009). “OpinionMiner: A Novel Machine Learning System for Web Opinion Mining and Extraction.” In: Proceedings of ACM SIGKDD Conference (KDD-2009). doi:10.1145/1557019.1557148.
2005
- (Srihari, 2005) ⇒ Rohini K Srihari. (2005). “Evaluation Methodology for IE Tasks." Tutorial on Evaluation of Information Extraction Systems presented at ICON-2005.
- (Niu et al., 2005) ⇒ C. Niu, W. Li, Rohini K Srihari, and H. Li. (2005). “Word Independent Context Pair Classification Model for Word Sense Disambiguation.” In: Proceedings of CoNLL-2005.
2003
- (Li et al., 2003) ⇒ Huifeng Li, Rohini K Srihari, Cheng Niu, and Wei Li. (2003). “InfoXtract Location Normalization: a hybrid approach to geographic references in information extraction.” In: András Kornai and Beth Sundheim, editors, HLT-NAACL 2003 Workshop: Analysis of Geographic References.
2002
- (Li et al., 2002) ⇒ Huifeng Li, Rohini K Srihari, Cheng Niu, and Wei Li. (2002). “Location Normalization for Information Extraction.” In: Nineteenth International Conference on Computational Linguistics (COLING 2002).
- (Zheng et al., 2002) ⇒ Z. Zheng, X. Wu, R. Srihari. (2002). “Feature Selection for Text Categorization on Imbalanced Data.” In: SIGKDD Explorations, 2002.
2000
- (Srihari et al., 2000) ⇒ Rohini K Srihari, Zhongfei Zhang, and Aibing Rao. (2000). “Intelligent Indexing and Semantic Retrieval of Multimodal Documents.” In: Information Retrieval 2(2/3). doi:10.1023/A:1009962928226.
- (Srihari & Li, 2000) ⇒ Rohini K Srihari, Wei Li. (2000). “A Question Answering System Supported by Information Extraction.” In: Proceedings of the sixth conference on Applied Natural Language Processing. doi:10.3115/974147.974170