Proper Subgraph
Jump to navigation
Jump to search
See: Subgraph, Proper Subset.
References
2013
- http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Subgraphs
- A subgraph of a graph G is a graph whose vertex set is a subset of that of G, and whose adjacency relation is a subset of that of G restricted to this subset. In the other direction, a supergraph of a graph G is a graph of which G is a subgraph. We say a graph G contains another graph H if some subgraph of G is H or is isomorphic to H. …
… A graph G is minimal with some property P provided that G has property P and no proper subgraph of G has property P. In this definition, the term subgraph is usually understood to mean "induced subgraph." The notion of maximality is defined dually: G is maximal with P provided that P(G) and G has no proper supergraph H such that P(H).
- A subgraph of a graph G is a graph whose vertex set is a subset of that of G, and whose adjacency relation is a subset of that of G restricted to this subset. In the other direction, a supergraph of a graph G is a graph of which G is a subgraph. We say a graph G contains another graph H if some subgraph of G is H or is isomorphic to H. …