Product Rule
Jump to navigation
Jump to search
See: Calculus, Chain Rule, Bayes Theorem.
References
2011 =
- http://en.wikipedia.org/wiki/Product_rule
- In calculus, the product rule is a formula used to find the derivatives of products of two or more functions. It may be stated thus: [math]\displaystyle{ (f\cdot g)'=f'\cdot g+f\cdot g' \,\! }[/math] or in the Leibniz notation thus: [math]\displaystyle{ \dfrac{d}{dx}(u\cdot v)=u\cdot \dfrac{dv}{dx}+v\cdot \dfrac{du}{dx} }[/math].
The derivative of the product of three functions is: [math]\displaystyle{ \dfrac{d}{dx}(u\cdot v \cdot w)=\dfrac{du}{dx} \cdot v \cdot \lt math\gt w }[/math] + u \cdot \dfrac{dv}{dx} \cdot [math]\displaystyle{ w }[/math] + u\cdot v\cdot \dfrac{dw}{dx}</math>.
- In calculus, the product rule is a formula used to find the derivatives of products of two or more functions. It may be stated thus: [math]\displaystyle{ (f\cdot g)'=f'\cdot g+f\cdot g' \,\! }[/math] or in the Leibniz notation thus: [math]\displaystyle{ \dfrac{d}{dx}(u\cdot v)=u\cdot \dfrac{dv}{dx}+v\cdot \dfrac{du}{dx} }[/math].