Probability Weighted Moments Algorithm

From GM-RKB
Jump to navigation Jump to search

A Probability Weighted Moments Algorithm is a parameter estimation algorithm for cumulative distribution functions whose inverse forms are explicitly defined.



References

2015


2005

1979

[math]\displaystyle{ M(l,j,k) = E[X^lF^j(1 - F)^k]=\int_0^1[xF]^lF^j(1-F)^k DF }[/math]
where [math]\displaystyle{ l, j }[/math], and [math]\displaystyle{ k }[/math] are real numbers. If [math]\displaystyle{ j = k = 0 }[/math] and [math]\displaystyle{ l }[/math] is a nonnegative integer, then [math]\displaystyle{ M_{l,0,0} }[/math] represents the conventional moment about the origin of order 1.