Orthogonal Projection

From GM-RKB
Jump to navigation Jump to search

An Orthogonal Projection is a Linear Projection that ...



References

2015

  • (Wikipedia, 2015) ⇒ http://en.wikipedia.org/wiki/projection_(linear_algebra)#Orthogonal_projection Retrieved:2015-2-2.
    • For example, the function which maps the point (x, y, z) in three-dimensional space R3 to the point (x, y, 0) is an orthogonal projection onto the xy plane. This function is represented by the matrix :[math]\displaystyle{ P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}. }[/math]

      The action of this matrix on an arbitrary vector is

       :[math]\displaystyle{ P \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \lt P\gt x \\ y \\ 0 \end{pmatrix}. }[/math]

      To see that P is indeed a projection, i.e., , we compute

       :[math]\displaystyle{ P^2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = P \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = P\begin{pmatrix} x \\ y \\ z \end{pmatrix}. }[/math]