Noble Gas
A Noble Gas is a group of chemical elements that constitutes an monoatomic gas with very low chemical reactivity.
- AKA: Inert Gas.
- Context:
- It is characterized by being oderless and colorless.
- Example(s)
- Counter-Example(s)
- See: Gas Balloon, Chemical Element, Standard Conditions For Temperature And Pressure, Monatomic, Chemical Reactivity, Helium, Neon, Argon, Krypton, Xenon, Radon, Oganesson.
References
2017
- (Wikipedia, 2017) ⇒ https://en.wikipedia.org/wiki/Noble_gas Retrieved:2017-7-9.
- The noble gases (historically also the inert gases) make up a group of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low chemical reactivity. The six noble gases that occur naturally are helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and the radioactive radon (Rn). Oganesson (Og) is predicted to be a noble gas as well, but its chemistry has not yet been investigated.
For the first six periods of the periodic table, the noble gases are exactly the members of group 18 of the periodic table. Noble gases are typically highly unreactive except when under particular extreme conditions. The inertness of noble gases makes them very suitable in applications where reactions are not wanted. For example, argon is used in light bulbs to prevent the hot tungsten filament from oxidizing; also, helium is used in breathing gas by deep-sea divers to prevent oxygen, nitrogen and carbon dioxide (hypercapnia) toxicity.
The properties of the noble gases can be well explained by modern theories of atomic structure: their outer shell of valence electrons is considered to be "full", giving them little tendency to participate in chemical reactions, and it has been possible to prepare only a few hundred noble gas compounds. The melting and boiling points for a given noble gas are close together, differing by less than ; that is, they are liquids over only a small temperature range.
Neon, argon, krypton, and xenon are obtained from air in an air separation unit using the methods of liquefaction of gases and fractional distillation. Helium is sourced from natural gas fields which have high concentrations of helium in the natural gas, using cryogenic gas separation techniques, and radon is usually isolated from the radioactive decay of dissolved radium, thorium, or uranium compounds (since those compounds give off alpha particles). Noble gases have several important applications in industries such as lighting, welding, and space exploration. A helium-oxygen breathing gas is often used by deep-sea divers at depths of seawater over to keep the diver from experiencing oxygen toxemia, the lethal effect of high-pressure oxygen, nitrogen narcosis, the distracting narcotic effect of the nitrogen in air beyond this partial-pressure threshold, and carbon dioxide poisoning (hypercapnia), the panic-inducing effect of excessive carbon dioxide in the bloodstream. After the risks caused by the flammability of hydrogen became apparent, it was replaced with helium in blimps and balloons.
- The noble gases (historically also the inert gases) make up a group of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low chemical reactivity. The six noble gases that occur naturally are helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and the radioactive radon (Rn). Oganesson (Og) is predicted to be a noble gas as well, but its chemistry has not yet been investigated.