Linear Classification Function
Jump to navigation
Jump to search
A Linear Classification Function is a Classification Function based on a Linear Function.
- AKA: Linear Classifier.
- Context:
- It can be associated with a Linear Statistical Model.
- It can be produced by a Linear Classification Algorithm.
- It can range from being a Discriminative Linear Classification Function to being a Generative Linear Classification Function.
- …
- Example(s):
- [math]\displaystyle{ C(x) = sign\left(\beta_0 +\beta^T x\right) }[/math],
- …
- Counter-Example(s):
- See: Non-Linear Function, Linear Decision Function.
References
2004
- (Hastie et al., 2004) ⇒ Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. (2004). “The Entire Regularization Path for the Support Vector Machine.” In: The Journal of Machine Learning Research, 5.
- QUOTE: We have a set of [math]\displaystyle{ n }[/math] training pairs [math]\displaystyle{ x_i,\; y_i }[/math] , where [math]\displaystyle{ x_i \in \mathbb{R}^p }[/math] is a p-vector of real valued predictors (attributes) for the ith observation, [math]\displaystyle{ y_i \in \{−1, +1\} }[/math] codes its binary response. We start off with the simple case of a linear classifier, where our goal is to estimate a linear decision function
[math]\displaystyle{ f(x) = \beta_0 +\beta^T x,\quad }[/math](1)
and its associated classifier
[math]\displaystyle{ C(x) = sign[f(x)]\quad }[/math](2)
There are many ways to fit such a linear classifier, including linear regression, Fisher’s linear discriminant analysis, and logistic regression [Hastie et al., 2001, Chapter 4].
- QUOTE: We have a set of [math]\displaystyle{ n }[/math] training pairs [math]\displaystyle{ x_i,\; y_i }[/math] , where [math]\displaystyle{ x_i \in \mathbb{R}^p }[/math] is a p-vector of real valued predictors (attributes) for the ith observation, [math]\displaystyle{ y_i \in \{−1, +1\} }[/math] codes its binary response. We start off with the simple case of a linear classifier, where our goal is to estimate a linear decision function
1995
- (Li, 1995) ⇒ Stan Z. Li. (1995). “Markov Random Field Modeling in Computer Vision.” Springer-Verlag. ISBN:4431701451
- 7.2.3 Linear Classification Function http://www.cbsr.ia.ac.cn/users/szli/mrf_book/Chapter_7/node120.html