2012 NoNounPhraseLeftBehindDetecting
- (Lin et al., 2012) ⇒ Thomas Lin, Mausam, and Oren Etzioni. (2012). “No Noun Phrase Left Behind: Detecting and Typing Unlinkable Entities.” In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning.
Subject Headings: Entity Mention Recognition and Linking Task, Document to Wikipedia Interlinking Task.
Notes
Cited By
- http://scholar.google.com/scholar?q=%222012%22+2012
- http://dl.acm.org/citation.cfm?id=2390948.2391045&preflayout=flat#citedby
Quotes
Abstract
Entity linking systems link noun-phrase mentions in text to their corresponding Wikipedia articles. However, NLP applications would gain from the ability to detect and type all entities mentioned in text, including the long tail of entities not prominent enough to have their own Wikipedia articles. In this paper we show that once the Wikipedia entities mentioned in a corpus of textual assertions are linked, this can further enable the detection and fine-grained typing of the unlinkable entities. Our proposed method for detecting unlinkable entities achieves 24% greater accuracy than a Named Entity Recognition baseline, and our method for fine-grained typing is able to propagate over 1,000 types from linked Wikipedia entities to unlinkable entities. Detection and typing of unlinkable entities can increase yield for NLP applications such as typed question answering.
References
;
Author | volume | Date Value | title | type | journal | titleUrl | doi | note | year | |
---|---|---|---|---|---|---|---|---|---|---|
2012 NoNounPhraseLeftBehindDetecting | Oren Etzioni Thomas Lin Mausam | No Noun Phrase Left Behind: Detecting and Typing Unlinkable Entities | 2012 |