Jeff Clune
Jump to navigation
Jump to search
Jeff Clune is a person.
References
2024
- (Bengio, Hinton et al., 2024) ⇒ Yoshua Bengio, Geoffrey Hinton, Andrew Yao, Dawn Song, Pieter Abbeel, Trevor Darrell, Yuval Noah Harari, Ya-Qin Zhang, Lan Xue, Shai Shalev-Shwartz, Gillian Hadfield, Jeff Clune, Tegan Maharaj, Frank Hutter, Atılım Güneş Baydin, Sheila McIlraith, Qiqi Gao, Ashwin Acharya, David Krueger, Anca Dragan, Philip Torr, Stuart Russell, Daniel Kahneman, Jan Brauner, and Sören Mindermann. (2024). “Managing Extreme AI Risks Amid Rapid Progress.” In: Science. 10.1126/science.adn0117 doi: 10.1126/science.adn0117
- (Bruce, Dennis et al., 2024) ⇒ Jake Bruce, Michael Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes, Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, Yusuf Aytar, Sarah Bechtle, Feryal Behbahani, Stephanie Chan, Nicolas Heess, Lucy Gonzalez, Simon Osindero, Sherjil Ozair, Scott Reed, Jingwei Zhang, Konrad Zolna, Jeff Clune, Nando de Freitas, Satinder Singh, and Tim Rocktäschel. (2024). “Genie: Generative Interactive Environments.”
2017
- (Such et al., 2017) ⇒ Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. (2017). “Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning.” In: arXiv:1712.06567 Journal.
2015
- (Nguyen et al., 2015) ⇒ Anh Nguyen, Jason Yosinski, and Jeff Clune. (2015). “Deep Neural Networks Are Easily Fooled: High Confidence Predictions for Unrecognizable Images.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427-436.
2014
- (Yosinski et al., 2014) ⇒ Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. (2014). “How Transferable Are Features in Deep Neural Networks?. ” In: Advances in Neural Information Processing Systems, pp. 3320-3328.
2013
- (Clune et al., 2013) ⇒ Jeff Clune, Jean-Baptiste Mouret, and Hod Lipson. (2013). “The Evolutionary Origins of Modularity.” In: Proceedings of the Royal Society of London B: Biological Sciences, 280(1755).