Inverse Square Root Linear Unit (ISRLU) Activation Function
(Redirected from Inverse square root linear unit (ISRLU))
Jump to navigation
Jump to search
An Inverse Square Root Linear Unit (ISRLU) Activation Function is a neuron activation function that is based on the piecewise function:
[math]\displaystyle{ f(x) = \begin{cases}\frac{x}{\sqrt{1 + \alpha x^2}} & \text{for } x \lt 0\\ x & \text{for } x \ge 0\end{cases} }[/math].
- Context:
- It can (typically) have similar properties to an Exponential Linear Unit (ELU) Function.
- It can be implemented to be faster than an ELU Activation Function.
- Example(s):
- …
- Counter-Example(s):
- a Inverse Square Root Unit Activation Function,
- a Softmax-based Activation Function,
- a Rectified-based Activation Function,
- a Heaviside Step Activation Function,
- a Ramp Function-based Activation Function,
- a Logistic Sigmoid-based Activation Function,
- a Hyperbolic Tangent-based Activation Function,
- a Gaussian-based Activation Function,
- a Softsign Activation Function,
- a Softshrink Activation Function,
- an Adaptive Piecewise Linear Activation Function,
- a Maxout Activation Function,
- a Long Short-Term Memory Unit-based Activation Function,
- a Bent Identity Activation Function,
- a SoftExponential Activation Function,
- a Sinusoid-based Activation Function.
- See: Artificial Neural Network, Artificial Neuron, Neural Network Topology, Neural Network Layer, Neural Network Learning Rate.
References
2018
- (Wikipedia, 2018) ⇒ https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions Retrieved:2018-2-18.
- The following table compares the properties of several activation functions that are functions of one fold from the previous layer or layers:
Name | Plot | Equation | Derivative (with respect to x) | Range | Order of continuity | Monotonic | Derivative Monotonic | Approximates identity near the origin |
---|---|---|---|---|---|---|---|---|
Identity | [math]\displaystyle{ f(x)=x }[/math] | [math]\displaystyle{ f'(x)=1 }[/math] | [math]\displaystyle{ (-\infty,\infty) }[/math] | [math]\displaystyle{ C^\infty }[/math] | Yes | Yes | Yes | |
Binary step | [math]\displaystyle{ f(x) = \begin{cases} 0 & \text{for } x \lt 0\\ 1 & \text{for } x \ge 0\end{cases} }[/math] | [math]\displaystyle{ f'(x) = \begin{cases} 0 & \text{for } x \ne 0\\ ? & \text{for } x = 0\end{cases} }[/math] | [math]\displaystyle{ \{0,1\} }[/math] | [math]\displaystyle{ C^{-1} }[/math] | Yes | No | No | |
Logistic (a.k.a. Soft step) | [math]\displaystyle{ f(x)=\frac{1}{1+e^{-x}} }[/math] | [math]\displaystyle{ f'(x)=f(x)(1-f(x)) }[/math] | [math]\displaystyle{ (0,1) }[/math] | [math]\displaystyle{ C^\infty }[/math] | Yes | No | No | |
(...) | (...) | (...) | (...) | (...) | (...) | (...) | (...) | (...) |
Inverse square root unit (ISRU)[1] | [math]\displaystyle{ f(x) = \frac{x}{\sqrt{1 + \alpha x^2}} }[/math] | [math]\displaystyle{ f'(x) = \left(\frac{1}{\sqrt{1 + \alpha x^2}}\right)^3 }[/math] | [math]\displaystyle{ \left(-\frac{1}{\sqrt{\alpha}},\frac{1}{\sqrt{\alpha}}\right) }[/math] | [math]\displaystyle{ C^\infty }[/math] | Yes | No | Yes | |
(...) | (...) | (...) | (...) | (...) | (...) | (...) | (...) | (...) |
Inverse square root linear unit (ISRLU) | [math]\displaystyle{ f(x) = \begin{cases} \frac{x}{\sqrt{1 + \alpha x^2}} & \text{for } x \lt 0\\ x & \text{for } x \ge 0\end{cases} }[/math] | [math]\displaystyle{ f'(x) = \begin{cases} \left(\frac{1}{\sqrt{1 + \alpha x^2}}\right)^3 & \text{for } x \lt 0\\ 1 & \text{for } x \ge 0\end{cases} }[/math] | [math]\displaystyle{ \left(-\frac{1}{\sqrt{\alpha}},\infty\right) }[/math] | [math]\displaystyle{ C^2 }[/math] | Yes | Yes | Yes | |
Adaptive piecewise linear (APL) [2] | [math]\displaystyle{ f(x) = \max(0,x) + \sum_{s=1}^{S}a_i^s \max(0, -x + b_i^s) }[/math] | [math]\displaystyle{ f'(x) = H(x) - \sum_{s=1}^{S}a_i^s H(-x + b_i^s) }[/math] | [math]\displaystyle{ (-\infty,\infty) }[/math] | [math]\displaystyle{ C^0 }[/math] | No | No | No | |
SoftPlus[3] | [math]\displaystyle{ f(x)=\ln(1+e^x) }[/math] | [math]\displaystyle{ f'(x)=\frac{1}{1+e^{-x}} }[/math] | [math]\displaystyle{ (0,\infty) }[/math] | [math]\displaystyle{ C^\infty }[/math] | Yes | Yes | No | |
Bent identity | [math]\displaystyle{ f(x)=\frac{\sqrt{x^2 + 1} - 1}{2} + x }[/math] | [math]\displaystyle{ f'(x)=\frac{x}{2\sqrt{x^2 + 1}} + 1 }[/math] | [math]\displaystyle{ (-\infty,\infty) }[/math] | [math]\displaystyle{ C^\infty }[/math] | Yes | Yes | Yes | |
SoftExponential [4] | [math]\displaystyle{ f(\alpha,x) = \begin{cases} -\frac{\ln(1-\alpha (x + \alpha))}{\alpha} & \text{for } \alpha \lt 0\\ x & \text{for } \alpha = 0\\ \frac{e^{\alpha x} - 1}{\alpha} + \alpha & \text{for } \alpha \gt 0\end{cases} }[/math] | [math]\displaystyle{ f'(\alpha,x) = \begin{cases} \frac{1}{1-\alpha (\alpha + x)} & \text{for } \alpha \lt 0\\ e^{\alpha x} & \text{for } \alpha \ge 0\end{cases} }[/math] | [math]\displaystyle{ (-\infty,\infty) }[/math] | [math]\displaystyle{ C^\infty }[/math] | Yes | Yes | Template:Depends | |
Sinusoid[5] | [math]\displaystyle{ f(x)=\sin(x) }[/math] | [math]\displaystyle{ f'(x)=\cos(x) }[/math] | [math]\displaystyle{ [-1,1] }[/math] | [math]\displaystyle{ C^\infty }[/math] | No | No | Yes | |
Sinc | [math]\displaystyle{ f(x)=\begin{cases} 1 & \text{for } x = 0\\ \frac{\sin(x)}{x} & \text{for } x \ne 0\end{cases} }[/math] | [math]\displaystyle{ f'(x)=\begin{cases} 0 & \text{for } x = 0\\ \frac{\cos(x)}{x} - \frac{\sin(x)}{x^2} & \text{for } x \ne 0\end{cases} }[/math] | [math]\displaystyle{ [\approx-.217234,1] }[/math] | [math]\displaystyle{ C^\infty }[/math] | No | No | No | |
Gaussian | [math]\displaystyle{ f(x)=e^{-x^2} }[/math] | [math]\displaystyle{ f'(x)=-2xe^{-x^2} }[/math] | [math]\displaystyle{ (0,1] }[/math] | [math]\displaystyle{ C^\infty }[/math] | No | No | No |
Here, H is the Heaviside step function.
α is a stochastic variable sampled from a uniform distribution at training time and fixed to the expectation value of the distribution at test time.
2017
- (Carlile et al.,2017) ⇒ Carlile, B., Delamarter, G., Kinney, P., Marti, A., & Whitney, B. (2017). Improving Deep Learning by Inverse Square Root Linear Units (ISRLUs). arXiv preprint arXiv:1710.09967.
- ABSTRACT: We introduce the “inverse square root linear unit” (ISRLU) to speed up learning in deep neural networks. ISRLU has better performance than ELU but has many of the same benefits. ISRLU and ELU have similar curves and characteristics. Both have negative values, allowing them to push mean unit activation closer to zero, and bring the normal gradient closer to the unit natural gradient, ensuring a noise-robust deactivation state, lessening the over fitting risk. The significant performance advantage of ISRLU on traditional CPUs also carry over to more efficient HW implementations on HW/SW codesign for CNNs/RNNs. In experiments with TensorFlow, ISRLU leads to faster learning and better generalization than ReLU on CNNs. This work also suggests a computationally efficient variant called the “inverse square root unit” (ISRU) which can be used for RNNs. Many RNNs use either long short-term memory (LSTM) and gated recurrent units (GRU) which are implemented with tanh and sigmoid activation functions. ISRU has less computational complexity but still has a similar curve to tanh and sigmoid.
- ↑ Carlile, Brad; Delamarter, Guy; Kinney, Paul; Marti, Akiko; Whitney, Brian (2017-11-09). “Improving Deep Learning by Inverse Square Root Linear Units (ISRLUs)". arXiv:1710.09967 Freely accessible [cs.LG].
- ↑ Forest Agostinelli; Matthew Hoffman; Peter Sadowski; Pierre Baldi (21 Dec 2014). “Learning Activation Functions to Improve Deep Neural Networks". arXiv:1412.6830 Freely accessible cs.NE.
- ↑ Glorot, Xavier; Bordes, Antoine; Bengio, Yoshua (2011). "Deep sparse rectifier neural networks" (PDF). International Conference on Artificial Intelligence and Statistics.
- ↑ Godfrey, Luke B.; Gashler, Michael S. (2016-02-03). "A continuum among logarithmic, linear, and exponential functions, and its potential to improve generalization in neural networks". 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management: KDIR 1602: 481–486. arXiv:1602.01321. Bibcode 2016arXiv160201321G.
- ↑ Gashler, Michael S.; Ashmore, Stephen C. (2014-05-09). “Training Deep Fourier Neural Networks To Fit Time-Series Data". arXiv:1405.2262 Freely accessible cs.NE.