Integrated Brain Measure

From GM-RKB
Jump to navigation Jump to search

An Integrated Brain Measure is a brain measure that ...



References

2016

2010

  • Halassa, Michael M., and Philip G. Haydon. “Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior." Annual review of physiology 72 (2010): 335.
    • ABSTRACT: The past decade has seen an explosion of research on roles of neuron-astrocyte interactions in the control of brain function. We highlight recent studies performed on the tripartite synapse, the structure consisting of pre- and postsynaptic elements of the synapse and an associated astrocytic process. Astrocytes respond to neuronal activity and neuro-transmitters, through the activation of metabotropic receptors, and can release the gliotransmitters ATP, D-serine, and glutamate, which act on neurons. Astrocyte-derived ATP modulates synaptic transmission, either directly or through its metabolic product adenosine. D-serine modulates NMDA receptor function, whereas glia-derived glutamate can play important roles in relapse following withdrawal from drugs of abuse. Cell type–specific molecular genetics has allowed a new level of examination of the function of astrocytes in brain function and has revealed an important role of these glial cells that is mediated by adenosine accumulation in the control of sleep and in cognitive impairments that follow sleep deprivation.

2009

  • Kidd, Parris M. “Integrated brain restoration after ischemic stroke-medical management, risk factors, nutrients, and other interventions for managing inflammation and enhancing brain plasticity." Alternative Medicine Review 14, no. 1 (2009): 14-36.
    • ABSTRACT: Brain injury from ischemic stroke can be devastating, but full brain restoration is feasible. Time until treatment is critical; rapid rate of injury progression, logistical and personnel constraints on neurological and cardiovascular assessment, limitations of recombinant tissue plasminogen activator (rtPA) for thrombolysis, anticoagulation and antiplatelet interventions, and neuroprotection all affect outcome. Promising acute neuroprotectant measures include albumin, magnesium, and hypothermia. Long-term hyperbaric oxygen therapy (HBOT) is safe and holds great promise. Eicosanoid and cytokine down-regulation by omega-3 nutrients docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) may help quench stroke inflammation. C-reactive protein (CRP), an inflammatory biomarker and stroke-recurrence predictor, responds favorably to krill oil (a phospholipid-DHA/EPA-astaxanthin complex). High homocysteine (Hcy) is a proven predictor of stroke recurrence and responds to folic acid and vitamin [B.sub.12]. Vitamin E may lower recurrence for individuals experiencing high oxidative stress. Citicoline shows promise for acute neuroprotection. Glycerophosphocholine (GPC) is neuroprotective and supports neuroplasticity via nerve growth factor (NGF) receptors. Stem cells have shown promise for neuronal restoration in randomized trials. Endogenous brain stem cells can migrate to an ischemic injury zone; exogenous stem cells once transplanted can migrate ("home") to the stroke lesion and provide trophic support for cortical neuroplasticity. The hematopoietic growth factors erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF) have shown promise in preliminary trials, with manageable adverse effects. Physical and mental exercises, including constraint-induced movement therapy (CIMT) and interactive learning aids, further support brain restoration following ischemic stroke. Brain plasticity underpins the function-driven brain restoration that can occur following stroke.

2007

  • Gutiérrez, Alonso N., David C. Westerly, Wolfgang A. Tomé, Hazim A. Jaradat, Thomas R. Mackie, Søren M. Bentzen, Deepak Khuntia, and Minesh P. Mehta. “Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study." International Journal of Radiation Oncology* Biology* Physics 69, no. 2 (2007): 589-597.
    • QUOTE: Conclusion: Composite tomotherapy plans achieved three objectives: homogeneous whole brain dose distribution equivalent to conventional whole brain radiotherapy; conformal hippocampal avoidance; and radiosurgically equivalent dose distributions to individual metastases.