Homogeneous First-Order Linear Differential Equation

From GM-RKB
Jump to navigation Jump to search

A Homogenous First-order Linear Differential Equation is a First-Order Linear Differential Equation which equals to zero.

  • Context:
    • It can be expressed as
[math]\displaystyle{ a_1(t)\frac{dy}{dt}+a_0(t)y=0\qquad\iff \qquad p(t)\frac{dy}{dt}+q(t)y=0 }[/math]
Alternatively, these expressions can be written as
[math]\displaystyle{ a_1(t)y'+a_0(t)y=0\quad\iff \quad y'+q(t)y=0\quad\textrm{with}\quad y''=\frac{d^2y}{dt^2},\;y'=\frac{dy}{dt} }[/math]


References