Supercomputer

From GM-RKB
(Redirected from High-Performance Computing)
Jump to navigation Jump to search

A Supercomputer is a computer with a relatively high computer processing power.



References

2017

  • (Wikipedia, 2017) ⇒ https://en.wikipedia.org/wiki/Supercomputer Retrieved:2017-9-5.
    • A supercomputer is a computer with a high level of computing performance compared to a general-purpose computer. Performance of a supercomputer is measured in floating-point operations per second (FLOPS) instead of million instructions per second (MIPS). As of 2015, there are supercomputers which can perform up to quadrillions of FLOPS, measured in P(eta)FLOPS. The majority of supercomputers today run Linux-based operating systems.

      Supercomputers play an important role in the field of computational science, and are used for a wide range of computationally intensive tasks in various fields, including quantum mechanics, weather forecasting, climate research, oil and gas exploration, molecular modeling (computing the structures and properties of chemical compounds, biological macromolecules, polymers, and crystals), and physical simulations (such as simulations of the early moments of the universe, airplane and spacecraft aerodynamics, the detonation of nuclear weapons, and nuclear fusion). Throughout their history, they have been essential in the field of cryptanalysis. Supercomputers were introduced in the 1960s, and for several decades the fastest were made by Seymour Cray at Control Data Corporation (CDC), Cray Research and subsequent companies bearing his name or monogram. The first such machines were highly tuned conventional designs that ran faster than their more general-purpose contemporaries. Through the 1960s, they began to add increasing amounts of parallelism with one to four processors being typical. From the 1970s, the vector computing concept with specialized math units operating on large arrays of data came to dominate. A notable example is the highly successful Cray-1 of 1976. Vector computers remained the dominant design into the 1990s. From then until today, massively parallel supercomputers with tens of thousands of off-the-shelf processors became the norm. The US has long been a leader in the supercomputer field, first through Cray's almost uninterrupted dominance of the field, and later through a variety of technology companies. Japan made major strides in the field in the 1980s and 90s, but since then China has become increasingly important. As of June 2016, the fastest supercomputer on the TOP500 supercomputer list is the Sunway TaihuLight, in China, with a LINPACK benchmark score of 93 PFLOPS, exceeding the previous record holder, Tianhe-2, by around 59 PFLOPS. Sunway TaihuLight's emergence is also notable for its use of indigenous chips, and is the first Chinese computer to enter the TOP500 list without using hardware from the United States. As of June 2016, China, for the first time, had more computers (167) on the TOP500 list than the United States (165). However, US built computers held ten of the top 20 positions; [1] [2] in November 2016 the U.S. has five of the top 10 and China two, in fact the top two.

  1. Clark, Don, China computer claims top speed, Wall Street Journal, 21 June 2016, p. B4
  2. Markoff, John, China crowds top computer list, New York Times, 21 June 2016, page B1

2014

  • (Wikipedia, 2014) ⇒ http://en.wikipedia.org/wiki/supercomputer Retrieved:2014-12-6.
    • A supercomputer is a computer at the frontline of contemporary processing capacity – particularly speed of calculation which can happen at speeds of nanoseconds. Supercomputers were introduced in the 1960s, made initially and, for decades, primarily by Seymour Cray at Control Data Corporation (CDC), Cray Research and subsequent companies bearing his name or monogram. While the supercomputers of the 1970s used only a few processors, in the 1990s machines with thousands of processors began to appear and, by the end of the 20th century, massively parallel supercomputers with tens of thousands of "off-the-shelf" processors were the norm. , China's Tianhe-2 supercomputer is the fastest in the world at 33.86 petaFLOPS, or 33.86 quadrillion floating point operations per second.

      Systems with massive numbers of processors generally take one of two paths: In one approach (e.g., in distributed computing), a large number of discrete computers (e.g., laptops) distributed across a network (e.g., the Internet) devote some or all of their time to solving a common problem; each individual computer (client) receives and completes many small tasks, reporting the results to a central server which integrates the task results from all the clients into the overall solution. [1] In another approach, a large number of dedicated processors are placed in close proximity to each other (e.g. in a computer cluster); this saves considerable time moving data around and makes it possible for the processors to work together (rather than on separate tasks), for example in mesh and hypercube architectures. The use of multi-core processors combined with centralization is an emerging trend; one can think of this as a small cluster (the multicore processor in a smartphone, tablet, laptop, etc.) that both depends upon and contributes to the cloud.[2] [3] Supercomputers play an important role in the field of computational science, and are used for a wide range of computationally intensive tasks in various fields, including quantum mechanics, weather forecasting, climate research, oil and gas exploration, molecular modeling (computing the structures and properties of chemical compounds, biological macromolecules, polymers, and crystals), and physical simulations (such as simulations of the early moments of the universe, airplane and spacecraft aerodynamics, the detonation of nuclear weapons, and nuclear fusion). Throughout their history, they have been essential in the field of cryptanalysis.

  1. DesktopGrid
  2. Performance Modelling and Optimization of Memory Access on Cellular Computer Architecture Cyclops64 K Barner, GR Gao, Z Hu, Lecture Notes in Computer Science, 2005, Volume 3779, Network and Parallel Computing, Pages 132–143
  3. Analysis and performance results of computing betweenness centrality on IBM Cyclops64 by Guangming Tan, Vugranam C. Sreedhar and Guang R. Gao The Journal of Supercomputing Volume 56, Number 1, 1–24 September 2011

2009