Greatest Common Divisor Operation

From GM-RKB
Jump to navigation Jump to search

A Greatest Common Divisor Operation, \gcd \left({S}\right) where [math]\displaystyle{ S }[/math] is an integer set with one non-zero element, is a integer set operation that produces the largest positive integer that divides the numbers without a remainder.



References

2013


  • http://www.proofwiki.org/wiki/Definition:Greatest_Common_Divisor/Integers/General_Definition
    • Let [math]\displaystyle{ S = \left\{{a_1, a_2, \ldots, a_n}\right\} \subseteq \Z }[/math] such that [math]\displaystyle{ \exists x \in S: x \ne 0 }[/math] (that is, at least one element of [math]\displaystyle{ S }[/math] is non-zero).

      Then: : [math]\displaystyle{ \gcd \left({S}\right) = \gcd \left\{{a_1, a_2, \ldots, a_n}\right\} }[/math] is defined as the largest [math]\displaystyle{ d \in \Z_{\gt 0} }[/math] such that [math]\displaystyle{ \forall x \in S: d \mathop \backslash x }[/math].