Gabor Filter

From GM-RKB
(Redirected from Gabor filter)
Jump to navigation Jump to search

A Gabor Filter is a linear band-pass filter of the form [math]\displaystyle{ g(x,y;\lambda,\theta,\psi,\sigma,\gamma) = \exp\left(-\frac{x'^2+\gamma^2y'^2}{2\sigma^2}\right)\exp\left(i\left(2\pi\frac{x'}{\lambda}+\psi\right)\right) }[/math], where [math]\displaystyle{ x' = x \cos\theta + y \sin\theta\, }[/math] and : [math]\displaystyle{ y' = -x \sin\theta + y \cos\theta\, }[/math] In this equation, [math]\displaystyle{ \lambda }[/math] represents the wavelength of the sinusoidal factor, [math]\displaystyle{ \theta }[/math] represents the orientation of the normal to the parallel stripes, [math]\displaystyle{ \psi }[/math] is the phase offset, [math]\displaystyle{ \sigma }[/math] is the sigma/standard deviation of the Gaussian envelope and [math]\displaystyle{ \gamma }[/math] is the spatial aspect ratio.



References

2017

  • (Wikipedia, 2017) ⇒ https://en.wikipedia.org/wiki/Gabor_filter#Definition Retrieved:2017-6-5.
    • Its impulse response is defined by a sinusoidal wave (a plane wave for 2D Gabor filters) multiplied by a Gaussian function.

      Because of the multiplication-convolution property (Convolution theorem), the Fourier transform of a Gabor filter's impulse response is the convolution of the Fourier transform of the harmonic function and the Fourier transform of the Gaussian function. The filter has a real and an imaginary component representing orthogonal directions. [1] The two components may be formed into a complex number or used individually.

      • Complex : [math]\displaystyle{ g(x,y;\lambda,\theta,\psi,\sigma,\gamma) = \exp\left(-\frac{x'^2+\gamma^2y'^2}{2\sigma^2}\right)\exp\left(i\left(2\pi\frac{x'}{\lambda}+\psi\right)\right) }[/math]
      • Real : [math]\displaystyle{ g(x,y;\lambda,\theta,\psi,\sigma,\gamma) = \exp\left(-\frac{x'^2+\gamma^2y'^2}{2\sigma^2}\right)\cos\left(2\pi\frac{x'}{\lambda}+\psi\right) }[/math]
      • Imaginary : [math]\displaystyle{ g(x,y;\lambda,\theta,\psi,\sigma,\gamma) = \exp\left(-\frac{x'^2+\gamma^2y'^2}{2\sigma^2}\right)\sin\left(2\pi\frac{x'}{\lambda}+\psi\right) }[/math] where : [math]\displaystyle{ x' = x \cos\theta + y \sin\theta\, }[/math] and : [math]\displaystyle{ y' = -x \sin\theta + y \cos\theta\, }[/math] In this equation, [math]\displaystyle{ \lambda }[/math] represents the wavelength of the sinusoidal factor, [math]\displaystyle{ \theta }[/math] represents the orientation of the normal to the parallel stripes of a Gabor function, [math]\displaystyle{ \psi }[/math] is the phase offset, [math]\displaystyle{ \sigma }[/math] is the sigma/standard deviation of the Gaussian envelope and [math]\displaystyle{ \gamma }[/math] is the spatial aspect ratio, and specifies the ellipticity of the support of the Gabor function.

2014

  1. 3D surface tracking and approximation using Gabor filters, Jesper Juul Henriksen, South Denmark University, March 28, 2007
  2. S. Marčelja."Mathematical description of the responses of simple cortical cells." 'Journal of the Optical Society of America', 70(11):1297–1300, 1980. http://dx.doi.org/10.1364/JOSA.70.001297
  3. J. G. Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A, 2(7):1160–1169, July 1985.

2003

1990

  • (Jain & Farrokhnia, 1990) ⇒ Anil K. Jain, and Farshid Farrokhnia. “Unsupervised texture segmentation using Gabor filters.” In: Proceedings of the International Conference on Systems, Man and Cybernetics.

1987

  • (Jones & Palmer, 1987) ⇒ Judson P. Jones , and Larry A. Palmer. (1987). “An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex.” In: Journal of neurophysiology, 58(6).