Function-Arity Function
Jump to navigation
Jump to search
A Function-Arity Function is a function that maps a Function to the Integer Value representing the Number of Function Arguments in the Function.
References
2008
- (Corbett, 2008) ⇒ Dan R. Corbett. (2008). “Graph-based Representation and Reasoning for Ontologies.” In: Studies in Computational Intelligence, Springer. [http://dx.doi.org/10.1007/978-3-540-78293-3 10.1007/978-3-540-78293-3 doi:[http://dx.doi.org/10.1007/978-3-540-78293-3 10.1007/978-3-540-78293-3)
- QUOTE: A Conceptual Graph with respect to a canon is a tuple G=(C,R, type, referent, arg1, ..., argm), where
- [math]\displaystyle{ C }[/math] is the set of concepts ; type [math]\displaystyle{ C }[/math] → [math]\displaystyle{ T }[/math] indicates the type of a concept, and referent [math]\displaystyle{ C }[/math] → $I$ indicates the referent marker of a concept.
- [math]\displaystyle{ R }[/math] is the set of conceptual relations, type [math]\displaystyle{ R }[/math] → [math]\displaystyle{ T }[/math] indicates the type of relation, and each argi [math]\displaystyle{ R }[/math] → [math]\displaystyle{ C }[/math] is a partial function where argi(r) indicates the i-th argument of the relation r. The argument functions are partial as they are undefined for arguments higher than the relation’s ‘arity’. We adopt the convention that arg0 indicates the (at most) one incoming arc. If there is no incoming arc to the relation, then arg0 is undefined. We also define the function arity(r) which returns an integer value representing the number of arguments that the relation [math]\displaystyle{ r }[/math] has.
- QUOTE: A Conceptual Graph with respect to a canon is a tuple G=(C,R, type, referent, arg1, ..., argm), where