FeUdal Network Manager Module

(Redirected from FuN Manager)

A FeUdal Network Manager Module is a FeUdal Network module that generates a goal vector and feeds it to a lower-level of hierarchy worker module that will produce a required action.



References

2018

 
Figure 1: An overview of our LeakGAN text generation framework. While the generator is responsible to generate the next word, the discriminator adversarially judges the generated sentence once it is complete. The chief novelty lies in that, unlike conventional adversarial training, during the process, the discriminator reveals its internal state (feature $f_t$) in order to guide the generator more informatively and frequently. (See Methodology Section for more details.)

{|style="border: 0px; text-align:center; border-spacing: 1px; margin: 1em auto; width: 80%"

|- |$f =\mathcal{F}\left(s ; \phi_{f}\right)$ |style="width:5%;text-align:right"|(1) |- |$D_{\phi}(s) =\operatorname{sigmoid}\left(\phi_{l} \cdot \mathcal{F}\left(s ; \phi_{f}\right)\right)=\operatorname{sigmoid}\left(\phi_{l}, f\right)$ |style="width:5%;text-align:right"|(2) |- |+ align="bottom" style="caption-side:top;text-align:center;font-weight:bold"|Discriminator

|}

{|style="border: 0px; text-align:center; border-spacing: 1px; margin: 1em auto; width: 80%" |- |$\hat{g}_{t}, h_{t}^{M} =\mathcal{M}\left(f_{t}, h_{t-1}^{M} ; \theta_{m}\right) $ |style="width:5%;text-align:right"|(3) |- |$g_{t} =\hat{g}_{t} /\left\|\hat{g}_{t}\right\|$ |style="width:5%;text-align:right"|(4) |- |$w_{t}=\psi\left(\sum_{i=1}^{c} g_{t-i}\right)=W_{\psi}\left(\sum_{i=1}^{c} g_{t-i}\right)$ |style="width:5%;text-align:right"|(5) |- |$O_{t}, h_{t}^{W}= \mathcal{W}\left(x_{t}, h_{t-1}^{W} ; \theta_{w}\right)$ |style="width:5%;text-align:right"|(6) |- |$G_{\theta}\left(\cdot \mid s_{t}\right)= \operatorname{sigmoid}\left(O_{t} \cdot w_{t} / \alpha\right)$ |style="width:5%;text-align:right"|(7) |- |$Q\left(f_{t}, g_{t}\right)=\mathbb{E}\left[r_{t}\right]$ |style="width:5%;text-align:right"|(8) |- |$\nabla_{\theta_{m}}^{\mathrm{adv}} g_{t}=-Q\left(f_{t}, g_{t}\right) \nabla_{\theta_{m}} d_{\cos }\left(\mathcal{F}\left(s_{t+c}\right)-\mathcal{F}\left(s_{t}\right), g_{t}\left(\theta_{m}\right)\right)$ |style="width:5%;text-align:right"|(9) |- |+ align="bottom" style="caption-side:top;text-align:center;font-weight:bold"|MANAGER of Generator |}

{|style="border: 0px; text-align:center; border-spacing: 1px; margin: 1em auto; width: 80%" |- |$\nabla_{\theta_{w}} \mathbb{E}_{s_{t-1} \sim G}\left[\sum_{x_{t}} r_{t}^{I} \mathcal{W}\left(x_{t} \mid s_{t-1} ; \theta_{w}\right)\right] =\mathbb{E}_{s_{t-1} \sim G, x_{t} \sim \mathcal{W}\left(x_{t} \mid s_{t-1}\right)}\left[r_{t}^{I} \nabla_{\theta_{w}} \log \mathcal{W}\left(x_{t} \mid s_{t-1} ; \theta_{w}\right)\right] $ |style="width:5%;text-align:right"|(10) |- |$r_{t}^{I}=\frac{1}{c} \sum_{i=1}^{c} d_{\cos }\left(\mathcal{F}\left(s_{t}\right)-\mathcal{F}\left(s_{t-i}\right), g_{t-i}\right)$ |style="width:5%;text-align:right"|(11) |- |+ align="bottom" style="caption-side:top;text-align:center;font-weight:bold"|WORKER of Generator |}

2017

$z_{t}=f^{\text {percept }}\left(x_{t}\right) ; s_{t}=f^{\text {Mspace}}\left(z_{t}\right)$ (1)
$h_{t}^{M}, \hat{g}_{t}=f^{M r n n}\left(s_{t}, h_{t-1}^{M}\right) ; g_{t}=\dfrac{\hat{g}_{t}}{\parallel\hat{g}_{t}\parallel}$ (2)
$w_{t}=\phi\left(\sum_{i=t-c}^{t} g_{i}\right) $ (3)
$h^{W}, U_{t}=f^{W r n n}\left(z_{t}, h_{t-1}^{W}\right) ; \pi_{t}=\operatorname{SoftMax}\left(U_{t} w_{t}\right)$ (4)

 
Figure 1. The schematic illustration of FuN.

1992