DrEureka Algorithm

From GM-RKB
(Redirected from DrEureka)
Jump to navigation Jump to search

A DrEureka Algorithm is a sim-to-real transfer algorithm that can automates reward function design and domain randomization parameters using LLMs.



References

2024

  • GPT-4
    • Python pseudo-code
def generate_reward_function(llm, task_description, safety_instructions):
   """
   Generate reward functions using a Large Language Model.
   """
   prompt = f"{task_description} {safety_instructions}"
   reward_function = llm.generate_reward_function(prompt)
   return reward_function
def evaluate_reward_function(environment, reward_function):
   """
   Evaluate the generated reward function in a simulated environment.
   """
   simulation_result = environment.run_simulation(reward_function)
   return simulation_result
def optimize_domain_randomization(llm, initial_policy, environment):
   """
   Optimize domain randomization parameters using the LLM based on the initial policy performance.
   """
   dr_parameters = llm.generate_domain_randomization(initial_policy, environment)
   return dr_parameters
def train_policy(environment, reward_function, dr_parameters):
   """
   Train a policy in the environment using the specified reward function and domain randomization.
   """
   policy = environment.train(reward_function, dr_parameters)
   return policy
def dr_eureka_algorithm(llm, environment, task_description, safety_instructions):
   """
   DrEureka algorithm to automate sim-to-real transfer using LLMs.
   """
   # Step 1: Generate reward function
   reward_function = generate_reward_function(llm, task_description, safety_instructions)
   
   # Step 2: Evaluate reward function
   evaluation_result = evaluate_reward_function(environment, reward_function)
   
   # Step 3: Generate initial policy based on reward function
   initial_policy = environment.initial_policy_setup(reward_function)
   
   # Step 4: Optimize domain randomization
   dr_parameters = optimize_domain_randomization(llm, initial_policy, environment)
   
   # Step 5: Train final policy using optimized domain randomization
   final_policy = train_policy(environment, reward_function, dr_parameters)
   
   return final_policy
# Usage
llm = LargeLanguageModel()
environment = SimulationEnvironment()
task_description = "Describe the task for which the policy is to be developed."
safety_instructions = "Include safety instructions relevant to the task."

final_policy = dr_eureka_algorithm(llm, environment, task_description, safety_instructions)

2024