Dihydromyricetin Molecule
Jump to navigation
Jump to search
A Dihydromyricetin Molecule is a flavanonol that ...
References
2019
- https://pubchem.ncbi.nlm.nih.gov/compound/Dihydromyricetin
- QUOTE: ... dihydromyricetin is an optically active form of dihydromyricetin having (2R,3R)-configuration. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a secondary alpha-hydroxy ketone and a dihydromyricetin. It is an enantiomer of a (-)-dihydromyricetin. …
2018
- (Wikipedia, 2018) ⇒ https://en.wikipedia.org/wiki/Ampelopsin Retrieved:2018-10-20.
- Ampelopsin, also known as dihydromyricetin, is a flavanonol, a type of flavonoid. It is found in the Ampelopsis species japonica, megalophylla, and grossedentata; Cercidiphyllum japonicum; Hovenia dulcis; Rhododendron cinnabarinum; some Pinus species; and some Cedrus species, as well as in Salix sachalinensis. Hovenia dulcis has been used in traditional Japanese, Chinese, and Korean medicines to treat fever, parasitic infection, as a laxative, and a treatment of liver diseases, and as a hangover treatment. Methods have been developed to extract ampelopsin from it at large scales, and laboratory research has been conducted with the compound to see if it might be useful as a drug in any of the conditions for which the parent plant has been traditionally used. In a trial of sixty patients with fatty liver disease dihydromyricetin improved glucose and lipid metabolism and exerted anti-inflammatory effects which were beneficial.
2012
- (Shen et al., 2012) ⇒ Yi Shen, A. Kerstin Lindemeyer, Claudia Gonzalez, Xuesi M. Shao, Igor Spigelman, Richard W. Olsen, and Jing Liang. (2012). “Dihydromyricetin As a Novel Anti-alcohol Intoxication Medication.” Journal of Neuroscience 32, no. 1
- ABSTRACT: Alcohol use disorders (AUD) constitute the most common form of substance abuse. The development of AUD involves repeated alcohol use leading to tolerance, alcohol withdrawal syndrome (AWS), physical and psychological dependence, with loss of ability to control excessive drinking. Currently there is no effective therapeutic agent for AUD without major side-effects. Dihydromyricetin (DHM, 1 mg/kg, i.p. injection), a flavonoid component of herbal medicines, counteracted acute alcohol (EtOH) intoxication, and also withdrawal signs in rats including tolerance, increased anxiety and seizure susceptibility; DHM greatly reduced EtOH consumption in an intermittent voluntary EtOH intake paradigm in rats. GABAA receptors (GABAARs) are major targets of acute and chronic EtOH actions on the brain. At the cellular levels, DHM (1 μM) antagonized both acute EtOH-induced potentiation of GABAARs and EtOH exposure/withdrawal-induced GABAAR plasticity, including alterations in responsiveness of extra- and post-synaptic GABAARs to acute EtOH, and most importantly, increases in GABAAR α4 subunit expression in hippocampus and cultured neurons. DHM anti-alcohol effects on both behavior and CNS neurons were antagonized by flumazenil (10 mg/kg in vivo, 10 μM in vitro), the benzodiazepine (BZ) antagonist. DHM competitively inhibited BZ-site [3H]flunitrazepam binding (IC50, 4.36 μM), suggesting DHM interaction with EtOH involves the BZ-sites on GABAARs. In summary, we determined DHM anti-alcoholic effects on animal models, and determined a major molecular target and cellular mechanism of DHM for counteracting alcohol intoxication and dependence. We demonstrated pharmacological properties of DHM consistent with those expected to underlie successful medical treatment of AUD; therefore DHM is a therapeutic candidate.