Conversational Dataset

From GM-RKB
Jump to navigation Jump to search

A Conversational Dataset is session dataset that contains conversational records (which capture the content, context, and structure of conversations between two or more participants)

  • Context:
    • It can (typically) include text exchanges via messaging apps, voice-based dialogues from phone calls or voice assistant interactions, and multimodal communications that combine text, voice, images, and videos.
    • It can (often) be analyzed to extract insights related to customer preferences, sentiment analysis, conversational patterns, and intent recognition.
    • It can be used to train Natural Language Processing (NLP) models, particularly in the development of chatbots and virtual assistants.
    • It can include metadata such as timestamps, participant identifiers, and conversation status, which provide additional context for analysis.
    • It can be subject to privacy and ethical considerations, especially when it contains personally identifiable information or sensitive content.
    • It can be sourced from public domains or collected through proprietary means, with considerations for licensing and ethical use.
    • It can include annotated data for specific tasks such as sentiment analysis, intent recognition, and dialogue act classification, facilitating supervised learning in machine learning models.
    • It can vary greatly in size, from hundreds of conversational instances to billions, affecting the model's performance and generalizability.
    • It can (often) require preprocessing steps such as tokenization, anonymization, and normalization to be effectively used in NLP tasks.
    • ...
  • Example(s):
    • A Chatbot Interaction Data.
    • The Reddit Comments Corpus from Defined AI, which includes over 1.7 billion comments from the Reddit platform, providing a vast resource of colloquial language and diverse topics​``【oaicite:3】``​.
    • The Cornell Movie-Dialogs Corpus available through ConvoKit, consisting of fictional conversations extracted from movie scripts, offering a rich dataset for studying narrative dialogues and character interactions​``【oaicite:2】``​.
    • The Twitter US Airline Sentiment Corpus on Kaggle, featuring customer service interactions in the form of tweets to US airlines, tagged with sentiment labels, useful for sentiment analysis tasks​``【oaicite:1】``​.
    • The Enron Email Corpus, comprising over 600,000 emails from the Enron Corporation, which is frequently used for research in communication patterns and email classification tasks​``【oaicite:0】``​.
    • A transcript of a customer service chat session, which includes the customer's queries and the service representative's responses.
    • A recording of a voice command given to a smart home device, along with the device's verbal response.
    • A collection of text messages exchanged between users on a social media platform discussing a specific topic.
    • ...
  • Counter-Example(s):
  • See: Natural Language Processing, Chatbot, Virtual Assistant, Sentiment Analysis, Intent Recognition.


References