Complement Law
Jump to navigation
Jump to search
A Complement Law is a Boolean Algebra law of complement sets.
- AKA: Complement Set Law.
- Context:
- It can be defined as: Given a set [math]\displaystyle{ A }[/math] and its complement [math]\displaystyle{ A^C }[/math] then
- 1. [math]\displaystyle{ A\cup \overline{A}=U }[/math]
- 2. [math]\displaystyle{ A\cap \overline{A}=\emptyset }[/math]
- where [math]\displaystyle{ U }[/math] is the universe set and [math]\displaystyle{ \emptyset }[/math] is the empty set, such that [math]\displaystyle{ U^C=\emptyset }[/math] and [math]\displaystyle{ \emptyset^C=U }[/math].
- It can be also be expressed as
- 1. [math]\displaystyle{ A+A^c=1 }[/math]
- 2. [math]\displaystyle{ A*A^c =0 }[/math]
- Example(s)
- [math]\displaystyle{ (A^C)^C=A }[/math], Double complement Law.
- Counter-Example(s)
- See: DeMorgan's Laws, Set Theory, Absolute Complement, Involution (Mathematics), Proper Subset.
References
2017
- (Wikipedia, 2017) ⇒ https://en.wikipedia.org/wiki/Complement_(set_theory)#Properties Retrieved:2017-6-4.
- Let A and B be two sets in a universe U. The following identities capture important properties of absolute complements:
- De Morgan's laws:[1]
- [math]\displaystyle{ \left(A \cup B \right)^{\complement}=A^{\complement} \cap B^{\complement} . }[/math]
- [math]\displaystyle{ \left(A \cap B \right)^{\complement}=A^{\complement} \cup B^{\complement} . }[/math]
- Complement laws:
- [math]\displaystyle{ A \cup A^{\complement} = U . }[/math]
- [math]\displaystyle{ A \cap A^{\complement} =\varnothing . }[/math]
- [math]\displaystyle{ \varnothing^{\complement} =U. }[/math]
- [math]\displaystyle{ U^{\complement} =\varnothing. }[/math]
- [math]\displaystyle{ \text{If }A\subset B\text{, then }B^{\complement}\subset A^{\complement}. }[/math]
- (this follows from the equivalence of a conditional with its contrapositive).
- Involution or double complement law:
- [math]\displaystyle{ (A^{\complement})^{\complement}=A. }[/math]
- Relationships between relative and absolute complements:
- [math]\displaystyle{ A \setminus B = A \cap B^\complement. }[/math]
- [math]\displaystyle{ (A \setminus B)^\complement = A^\complement \cup B. }[/math]
- Relationship with set difference:
- [math]\displaystyle{ A^\complement \setminus B^\complement = B \setminus A. }[/math]
- The first two complement laws above show that if A is a non-empty, proper subset of U, then {A, A∁} is a partition of U.
- De Morgan's laws:[1]
- ↑ Halmos, Paul R. (1960). Naive set theory. The University Series in Undergraduate Mathematics. van Nostrand Company. Zbl 0087.04403.