Complement Law

From GM-RKB
Jump to navigation Jump to search

A Complement Law is a Boolean Algebra law of complement sets.

  • AKA: Complement Set Law.
  • Context:
    • It can be defined as: Given a set [math]\displaystyle{ A }[/math] and its complement [math]\displaystyle{ A^C }[/math] then
1. [math]\displaystyle{ A\cup \overline{A}=U }[/math]
2. [math]\displaystyle{ A\cap \overline{A}=\emptyset }[/math]
where [math]\displaystyle{ U }[/math] is the universe set and [math]\displaystyle{ \emptyset }[/math] is the empty set, such that [math]\displaystyle{ U^C=\emptyset }[/math] and [math]\displaystyle{ \emptyset^C=U }[/math].
  • It can be also be expressed as
1. [math]\displaystyle{ A+A^c=1 }[/math]
2. [math]\displaystyle{ A*A^c =0 }[/math]


References

2017

De Morgan's laws:[1]
  • [math]\displaystyle{ \left(A \cup B \right)^{\complement}=A^{\complement} \cap B^{\complement} . }[/math]
  • [math]\displaystyle{ \left(A \cap B \right)^{\complement}=A^{\complement} \cup B^{\complement} . }[/math]
Complement laws:
  • [math]\displaystyle{ A \cup A^{\complement} = U . }[/math]
  • [math]\displaystyle{ A \cap A^{\complement} =\varnothing . }[/math]
  • [math]\displaystyle{ \varnothing^{\complement} =U. }[/math]
  • [math]\displaystyle{ U^{\complement} =\varnothing. }[/math]
  • [math]\displaystyle{ \text{If }A\subset B\text{, then }B^{\complement}\subset A^{\complement}. }[/math]
    (this follows from the equivalence of a conditional with its contrapositive).
Involution or double complement law:
  • [math]\displaystyle{ (A^{\complement})^{\complement}=A. }[/math]
Relationships between relative and absolute complements:
  • [math]\displaystyle{ A \setminus B = A \cap B^\complement. }[/math]
  • [math]\displaystyle{ (A \setminus B)^\complement = A^\complement \cup B. }[/math]
Relationship with set difference:
  • [math]\displaystyle{ A^\complement \setminus B^\complement = B \setminus A. }[/math]
The first two complement laws above show that if A is a non-empty, proper subset of U, then {A, A} is a partition of U.
  1. Halmos, Paul R. (1960). Naive set theory. The University Series in Undergraduate Mathematics. van Nostrand Company. Zbl 0087.04403.