Chow Test

From GM-RKB
Jump to navigation Jump to search

A Chow Test is a statistical test for the null hypothesis of whether the linear regression coefficients of two different datasets are equal.



References

2016

Suppose that we model our data as
[math]\displaystyle{ y_t=a+bx_{1t} + cx_{2t} + \varepsilon.\, }[/math]
If we split our data into two groups, then we have
[math]\displaystyle{ y_t=a_1+b_1x_{1t} + c_1x_{2t} + \varepsilon. \, }[/math]
and
[math]\displaystyle{ y_t=a_2+b_2x_{1t} + c_2x_{2t} + \varepsilon. \, }[/math]
The null hypothesis of the Chow test asserts that [math]\displaystyle{ a_1=a_2 }[/math], [math]\displaystyle{ b_1=b_2 }[/math], and [math]\displaystyle{ c_1=c_2 }[/math], and there is the assumption that the model errors [math]\displaystyle{ \varepsilon }[/math] are independent and identically distributed from a normal distribution with unknown variance.