Béatrice Daille
Jump to navigation
Jump to search
Béatrice Daille is a person.
- See: ACABIT System, Terminology Mining.
References
2009
- (Takeuchi et al., 2009) ⇒ Koichi Takeuchi, Kyo Kageura, Teruo Koyama, Béatrice Daille, and Laurent Romary. (2009). “Pattern Based Term Extraction Using ACABIT System." Technical Report. CoRR abs/0907.2452.
2007
- (Morin et al., 2007) ⇒ Emmanuel Morin, Béatrice Daille, Koichi Takeuchi, and Kyo Kageura. (2007). “Bilingual Terminology Mining-using Brain, Not Brawn Comparable Corpora.” In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics. (ACL 2007).
2002
- (Daille, 2002) ⇒ Béatrice Daille. (2002). “Terminology Mining.” In: Proceedings of the Summer Convention on Information Extraction (SCIE 2002). doi:10.1007/b11781
2001
- (Daille, 2001) ⇒ Béatrice Daille. (2001). “Qualitative Terminology Extraction: Identifying relational adjectives.” In: (Bourigault et al., 2001)
1996
- (Daille, 1996) ⇒ Béatrice Daille. (1996). “Study and Implementation of Combined Techniques for Automatic Extraction of Terminology.” In: (Klavans & Resnik, 1996).
1994
- (Daille, 1994a) ⇒ Béatrice Daille. (1994). “Study and Implementation of Combined Techniques for Automatic Extraction of Terminology.” In: Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics (ACL 1994).
- (Daille, 1994b) ⇒ Béatrice Daille. (1994). “Approche mixte pour l’extraction automatique de terminologie: statistiques lexicales et filtres linguistiques." PhD Dissertation
- (Daille et al., 1994) ⇒ Béatrice Daille, Éric Gaussier, and Jean-Marc Langé. (1994). “Towards Automatic Extraction of Monolingual and Bilingual Terminology.” In: Proceedings of the 15th International Conference on Computational Linguistics. 10.3115/991886.991975
- ABSTRACT: In this paper, we make use of linguistic knowledge to identify certain noun phrases, both in English and French, which are likely to be terms. We then test and compare different statistical scores to select the "good" ones among the candidate terms, and finally propose a statistical method to build correspondences of multi-words units across languages.