Black-Scholes Formula

From GM-RKB
Jump to navigation Jump to search

A Black-Scholes Formula is a closed-form option price calculation formula for the prices of European-style options.



References

2024

[math]\displaystyle{ \begin{align} & C(0, t) = 0\text{ for all }t \\ & C(S, t) \rightarrow S - K \text{ as }S \rightarrow \infty \\ & C(S, T) = \max\{S - K, 0\} \end{align} }[/math]

The value of a call option for a non-dividend-paying underlying stock in terms of the Black–Scholes parameters is:

[math]\displaystyle{ \begin{align} C(S_t, t) &= N(d_+)S_t - N(d_-)Ke^{-r(T - t)} \\ d_+ &= \frac{1}{\sigma\sqrt{T - t}}\left[\ln\left(\frac{S_t}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)(T - t)\right] \\ d_- &= d_+ - \sigma\sqrt{T - t} \\ \end{align} }[/math]

The price of a corresponding put option based on put–call parity with discount factor [math]\displaystyle{ e^{-r(T-t)} }[/math] is:

[math]\displaystyle{ \begin{align} P(S_t, t) &= Ke^{-r(T - t)} - S_t + C(S_t, t) \\ &= N(-d_-) Ke^{-r(T - t)} - N(-d_+) S_t \end{align}\, }[/math]
    • Alternative formulation
      • Introducing auxiliary variables allows for the formula to be simplified and reformulated in a form that can be more convenient (this is a special case of the Black '76 formula):
[math]\displaystyle{ \begin{align} C(F, \tau) &= D \left[ N(d_+) F - N(d_-) K \right] \\ d_+ & = \frac{1}{\sigma\sqrt{\tau}}\left[\ln\left(\frac{F}{K}\right) + \frac{1}{2}\sigma^2\tau\right] \\ d_- &= d_+ - \sigma\sqrt{\tau} \end{align} }[/math]

where: [math]\displaystyle{ D = e^{-r\tau} }[/math] is the discount factor

[math]\displaystyle{ F = e^{r\tau} S = \frac{S}{D} }[/math] is the forward price of the underlying asset, and [math]\displaystyle{ S = DF }[/math]

Given put–call parity, which is expressed in these terms as:

[math]\displaystyle{ C - P = D(F - K) = S - D K }[/math]

the price of a put option is:

[math]\displaystyle{ P(F, \tau) = D \left[ N(-d_-) K - N(-d_+) F \right] }[/math]