Antiderivative
Jump to navigation
Jump to search
An Antiderivative is a function that ...
- See: Calculus, Integral, Function's Derivative, Function (Mathematics), Derivative, Fundamental Theorem of Calculus, Antidifference, Brooks/Cole.
References
2014
- (Wikipedia, 2014) ⇒ http://en.wikipedia.org/wiki/Antiderivative Retrieved:2014-4-26.
- In calculus, an antiderivative, primitive integral or indefinite integral [1] of a function f is a differentiable function F whose derivative is equal to f, i.e., F ′ = f. The process of solving for antiderivatives is called antidifferentiation (or indefinite integration) and its opposite operation is called differentiation, which is the process of finding a derivative. Antiderivatives are related to definite integrals through the fundamental theorem of calculus: the definite integral of a function over an interval is equal to the difference between the values of an antiderivative evaluated at the endpoints of the interval.
The discrete equivalent of the notion of antiderivative is antidifference.
- In calculus, an antiderivative, primitive integral or indefinite integral [1] of a function f is a differentiable function F whose derivative is equal to f, i.e., F ′ = f. The process of solving for antiderivatives is called antidifferentiation (or indefinite integration) and its opposite operation is called differentiation, which is the process of finding a derivative. Antiderivatives are related to definite integrals through the fundamental theorem of calculus: the definite integral of a function over an interval is equal to the difference between the values of an antiderivative evaluated at the endpoints of the interval.
- ↑ Antiderivatives are also called general integrals, and sometimes integrals. The latter term is generic, and refers not only to indefinite integrals (antiderivatives), but also to definite integrals. When the word integral is used without additional specification, the reader is supposed to deduce from the context whether it is referred to a definite or indefinite integral. Some authors define the indefinite integral of a function as the set of its infinitely many possible antiderivatives. Others define it as an arbitrarily selected element of that set. Wikipedia adopts the latter approach.