Absolute Experimental Frequency

An Absolute Experimental Frequency is an empirical frequency for Random Experiment Outcomes that occur within some given Random Experiment Event.



References

2003

2002

1987

  • (Hogg & Ledolter, 1987) ⇒ Robert V. Hogg, and Johannes Ledolter. (1987). “Engineering Statistics.” Macmillan Publishing.
    • The collection of all possible outcomes, namely [math]\displaystyle{ S }[/math] = {H,T}, is called the sample space. Suppose that we are interested in a subset [math]\displaystyle{ A }[/math] of our sample space; for example, in our case, let A={H} represent heads. Repeat this random experiment a number of times, say [math]\displaystyle{ n }[/math], and count the number of times, say [math]\displaystyle{ f }[/math], that the experiment ended in A. Here [math]\displaystyle{ f }[/math] is called the frequency of the event A and the ratio f/n is called the relative frequency of the event [math]\displaystyle{ A }[/math] in the [math]\displaystyle{ n }[/math] trials of the experiment.
    • Random experiments have outcomes that cannot be determined with certainty before the experiments are performed... The collection of all possible outcomes, namely [math]\displaystyle{ S }[/math] = {H,T}, is called the sample space. Suppose that we are interested in a subset [math]\displaystyle{ A }[/math] of our sample space; for example, in our case, let A={H} represent heads. Repeat this random experiment a number of times, say [math]\displaystyle{ n }[/math], and count the number of times, say [math]\displaystyle{ f }[/math], that the experiment ended in A. Here [math]\displaystyle{ f }[/math] is called the frequency of the event A and the ratio f/n is called the relative frequency of the event [math]\displaystyle{ A }[/math] in the [math]\displaystyle{ n }[/math] trials of the experiment.