User Model
(Redirected from user model)
Jump to navigation
Jump to search
An User Model is a model of a user population.
- See: User Modeling, Demographics, Personalization.
References
2015
- (Wikipedia, 2015) ⇒ http://en.wikipedia.org/wiki/user_modeling#User_Model Retrieved:2015-11-8.
- A user model represents a collection of personal data associated with a specific user. Therefore, it is the basis for any adaptive changes to the system's behavior. Which data is included in the model depends on the purpose of the application. It can include personal information such as users' names and ages, their interests, their skills and knowledge, their goals and plans, their preferences and their dislikes or data about their behavior and their interactions with the system.
There are different design patterns for user models, though often a mixture of them is used.
- Static user models:Static user models are the most basic kinds of user models. Once the main data is gathered they are normally not changed again, they are static. Shifts in users' preferences are not registered and no learning algorithms are used to alter the model.
- Dynamic user models: Dynamic user models allow a more up to date representation of users. Changes in their interests, their learning progress or interactions with the system are noticed and influence the user models. The models can thus be updated and take the current needs and goals of the users into account.
- Stereotype based user models: Stereotype based user models are based on demographic statistics. Based on the gathered information users are classified into common stereotypes. The system then adapts to this stereotype. The application therefore can make assumptions about a user even though there might be no data about that specific area, because demographic studies have shown that other users in this stereotype have the same characteristics. Thus, stereotype based user models mainly rely on statistics and do not take into account that personal attributes might not match the stereotype. However, they allow predictions about a user even if there is rather little information about him or her.
- Highly adaptive user models: Highly adaptive user models try to represent one particular user and therefore allow a very high adaptivity of the system. In contrast to stereotype based user models they do not rely on demographic statistics but aim to find a specific solution for each user. Although users can take great benefit from this high adaptivity, this kind of model needs to gather a lot of information first.
- A user model represents a collection of personal data associated with a specific user. Therefore, it is the basis for any adaptive changes to the system's behavior. Which data is included in the model depends on the purpose of the application. It can include personal information such as users' names and ages, their interests, their skills and knowledge, their goals and plans, their preferences and their dislikes or data about their behavior and their interactions with the system.