Unsupervised Feature Learning Task
An Unsupervised Feature Learning Task is a Feature Learning Task that is an Unsupervised Learning Task.
- See: Self-Taught Learning.
References
2014
- http://deeplearning.stanford.edu/wiki/index.php/Self-Taught_Learning#On_the_terminology_of_unsupervised_feature_learning
- QUOTE: Assuming that we have a sufficiently powerful learning algorithm, one of the most reliable ways to get better performance is to give the algorithm more data. This has led to the that aphorism that in machine learning, "sometimes it's not who has the best algorithm that wins; it's who has the most data."
One can always try to get more labeled data, but this can be expensive. In particular, researchers have already gone to extraordinary lengths to use tools such as AMT (Amazon Mechanical Turk) to get large training sets. While having large numbers of people hand-label lots of data is probably a step forward compared to having large numbers of researchers hand-engineer features, it would be nice to do better. In particular, the promise of self-taught learning and unsupervised feature learning is that if we can get our algorithms to learn from unlabeled data, then we can easily obtain and learn from massive amounts of it. Even though a single unlabeled example is less informative than a single labeled example, if we can get tons of the former---for example, by downloading random unlabeled images/audio clips/text documents off the internet---and if our algorithms can exploit this unlabeled data effectively, then we might be able to achieve better performance than the massive hand-engineering and massive hand-labeling approaches.
In Self-taught learning and Unsupervised feature learning, we will give our algorithms a large amount of unlabeled data with which to learn a good feature representation of the input. If we are trying to solve a specific classification task, then we take this learned feature representation and whatever (perhaps small amount of) labeled data we have for that classification task, and apply supervised learning on that labeled data to solve the classification task.
These ideas probably have the most powerful effects in problems where we have a lot of unlabeled data, and a smaller amount of labeled data. However, they typically give good results even if we have only labeled data (in which case we usually perform the feature learning step using the labeled data, but ignoring the labels).
- QUOTE: Assuming that we have a sufficiently powerful learning algorithm, one of the most reliable ways to get better performance is to give the algorithm more data. This has led to the that aphorism that in machine learning, "sometimes it's not who has the best algorithm that wins; it's who has the most data."