Univariate Gaussian Density Function

From GM-RKB
(Redirected from uni-variate Gaussian)
Jump to navigation Jump to search

A univariate normal density function, [math]\displaystyle{ \mathcal{N}(x | \mu, \sigma) }[/math], is a Gaussian density function that is a univariate probability density function (where [math]\displaystyle{ a = \tfrac{1}{\sqrt{2\pi\sigma^2}} }[/math], [math]\displaystyle{ b = \mu }[/math], and [math]\displaystyle{ c = 2\sigma^2 }[/math]).



References

2012

  1. The designation "bell curve" is ambiguous: there are many other distributions which are "bell"-shaped: the Cauchy distribution, Student's t-distribution, generalized normal, logistic, etc.
  2. For the proof see Gaussian integral.
  3. Gale Encyclopedia of Psychology – Normal Distribution
  4. Cover, T. M.; Thomas, Joy A (2006). Elements of information theory. John Wiley and Sons. p. 254. 
  5. Park, Sung Y.; Bera, Anil K. (2009). "Maximum entropy autoregressive conditional heteroskedasticity model". Journal of Econometrics (Elsevier): 219–230. http://www.wise.xmu.edu.cn/Master/Download/..%5C..%5CUploadFiles%5Cpaper-masterdownload%5C2009519932327055475115776.pdf. Retrieved 2011-06-02. 

2011

2009

http://wiki.uiowa.edu/download/attachments/2228512/800px-Normal_distribution_pdf.png

2006