Median Test

From GM-RKB
(Redirected from median test)
Jump to navigation Jump to search

A Median Test is a non-parametric hypothesis test for comparing medians of two or more samples.



References

2017

  • [math]\displaystyle{ H_0: }[/math] All k populations have the same median.
  • [math]\displaystyle{ H_a: }[/math] All least two of the populations have different medians
Test Statistic: [math]\displaystyle{ \frac{N^2}{ab}\sum^k_{i=1}\frac{(O_{1i}−n_ia/N)^2}{n_i} }[/math]
where
  • [math]\displaystyle{ a }[/math] the number of observations greater than the median for all samples
  • [math]\displaystyle{ b }[/math] the number of observations less than or equal to the median for all samples
  • [math]\displaystyle{ N }[/math] the total number of observations
  • [math]\displaystyle{ O_{1i} }[/math] the number of observations greater than the median for sample i
Significance Level: [math]\displaystyle{ \alpha }[/math]
Critical Region: [math]\displaystyle{ T\gt \chi^2_{1−\alpha;k−1} }[/math]
where [math]\displaystyle{ \chi^2 }[/math] is the percent point function of the chi-square distribution and k-1 is the degrees of freedom
Conclusion: Reject the independence hypothesis if the value of the test statistic is greater than the chi-square value.

2016