Writing Parameter: Difference between revisions

From GM-RKB
Jump to navigation Jump to search
Line 60: Line 60:
** QUOTE: [[Few-shot prompting]] enables [[domain-specific content generation]] without full retraining, using [[task demonstration]]s to guide [[LLM output]].  
** QUOTE: [[Few-shot prompting]] enables [[domain-specific content generation]] without full retraining, using [[task demonstration]]s to guide [[LLM output]].  


=== 2020 ===   
=== 2020a ===   
* ([[Raffel et al., 2020]]) ⇒ Raffel, C., Roberts, A., & Shazeer, N. (2020). [https://colinraffel.com/publications/emnlp2020how.pdf "How Much Knowledge Can You Pack Into the Parameters of a Language Model?"]. In: Proceedings of EMNLP.   
* ([[Raffel et al., 2020]]) ⇒ Raffel, C., Roberts, A., & Shazeer, N. (2020). [https://colinraffel.com/publications/emnlp2020how.pdf "How Much Knowledge Can You Pack Into the Parameters of a Language Model?"]. In: Proceedings of EMNLP.   
** QUOTE: [[Language model]]s encode substantial [[domain knowledge]] implicitly, enabling [[zero-shot technical writing]] with 68% [[factual accuracy]] on [[specialized topic]]s.   
** QUOTE: [[Language model]]s encode substantial [[domain knowledge]] implicitly, enabling [[zero-shot technical writing]] with 68% [[factual accuracy]] on [[specialized topic]]s.   
=== 2020b ===
* ([[Sogeti Labs, 2020]]) ⇒ Sogeti Labs. (2020). [https://labs.sogeti.com/language-models-battle-of-the-parameters-natural-language-processing-on-steroids-part-ii/ "Language Models: Battle of the Parameters — NLP on Steroids (Part II)"]. In: Sogeti Labs Blog.   
* ([[Sogeti Labs, 2020]]) ⇒ Sogeti Labs. (2020). [https://labs.sogeti.com/language-models-battle-of-the-parameters-natural-language-processing-on-steroids-part-ii/ "Language Models: Battle of the Parameters — NLP on Steroids (Part II)"]. In: Sogeti Labs Blog.   
** QUOTE: [[Parameter-efficient fine-tuning]] (PEFT) allows [[specialized technical writing]] by adapting [[base LM]]s to [[domain glossary]]es with minimal training data.  
** QUOTE: [[Parameter-efficient fine-tuning (PEFT)]] allows [[specialized technical writing]] by adapting [[base LM]]s to [[domain glossary]]es with minimal training data.


=== 2017 ===   
=== 2017 ===   

Revision as of 18:43, 23 March 2025

A Writing Parameter is a LLM configuration parameter that controls specific attributes of automatically generated text to align with domain requirements, stylistic guidelines, or functional objectives.



References

2025

2024

2024b

2023

2021

2020a

2020b

2017