Google PaLM 1 Language Model: Difference between revisions

From GM-RKB
Jump to navigation Jump to search
m (Text replacement - ".↵----" to ". ----")
m (Text replacement - ". ↵" to ". ")
 
Line 16: Line 16:


=== 2022 ===
=== 2022 ===
* ([[2022_LargeLanguageModelsEncodeClinic|Singhal et al., 2022]]) ⇒ [[Karan Singhal]], [[Shekoofeh Azizi]], [[Tao Tu]], [[S Sara Mahdavi]], [[Jason Wei]], [[Hyung Won Chung]], [[Nathan Scales]], [[Ajay Tanwani]], [[Heather Cole-Lewis]], and [[Stephen Pfohl]], [[Perry Payne]], [[Martin Seneviratne]], [[Paul Gamble]], [[Chris Kelly]], [[Nathaneal Scharli]], [[Aakanksha Chowdhery]], [[Philip Mansfield]], [[Blaise Aguera y Arcas]], [[Dale Webster]], [[Greg S. Corrado]], [[Yossi Matias]], [[Katherine Chou]], [[Juraj Gottweis]], [[Nenad Tomasev]], [[Yun Liu]], and [[Alvin Rajkomar]]. ([[2022]]). “[https://arxiv.org/pdf/2212.13138.pdf Large Language Models Encode Clinical Knowledge].” In: arXiv preprint arXiv:2212.13138.  
* ([[2022_LargeLanguageModelsEncodeClinic|Singhal et al., 2022]]) ⇒ [[Karan Singhal]], [[Shekoofeh Azizi]], [[Tao Tu]], [[S Sara Mahdavi]], [[Jason Wei]], [[Hyung Won Chung]], [[Nathan Scales]], [[Ajay Tanwani]], [[Heather Cole-Lewis]], and [[Stephen Pfohl]], [[Perry Payne]], [[Martin Seneviratne]], [[Paul Gamble]], [[Chris Kelly]], [[Nathaneal Scharli]], [[Aakanksha Chowdhery]], [[Philip Mansfield]], [[Blaise Aguera y Arcas]], [[Dale Webster]], [[Greg S. Corrado]], [[Yossi Matias]], [[Katherine Chou]], [[Juraj Gottweis]], [[Nenad Tomasev]], [[Yun Liu]], and [[Alvin Rajkomar]]. ([[2022]]). “[https://arxiv.org/pdf/2212.13138.pdf Large Language Models Encode Clinical Knowledge].” In: arXiv preprint arXiv:2212.13138.
** QUOTE: .. In addition, [[we]] evaluate [[PaLM]] (a [[540-billion parameter LLM]]) and its [[instruction-tuned variant]], [[Flan-PaLM]], on [[MultiMedQA]]. </s> Using a combination of [[prompting strategi]]es, [[Flan-PaLM]] achieves [[state-of-the-art]] [[accuracy]] on every [[MultiMedQA multiple-choice dataset (MedQA]], [[MedMCQA]], [[PubMedQA]], [[MMLU clinical topic]]s), including 67.6% [[accuracy on MedQA (US Medical License Exam question]]s), [[surpassing prior state-of-the-art]] by over 17%. </s> However, [[human evaluation]] reveals key gaps in [[Flan-PaLM response]]s. </s> To [[resolve this we]] introduce [[instruction prompt tuning]], a [[parameter-efficient approach]] for aligning [[LLM]]s to new [[domain]]s using a few [[exemplar]]s. </s> The resulting [[model]], [[Med-PaLM]], [[performs encouragingly]], but remains inferior to [[clinician]]s. </s>
** QUOTE: .. In addition, [[we]] evaluate [[PaLM]] (a [[540-billion parameter LLM]]) and its [[instruction-tuned variant]], [[Flan-PaLM]], on [[MultiMedQA]]. </s> Using a combination of [[prompting strategi]]es, [[Flan-PaLM]] achieves [[state-of-the-art]] [[accuracy]] on every [[MultiMedQA multiple-choice dataset (MedQA]], [[MedMCQA]], [[PubMedQA]], [[MMLU clinical topic]]s), including 67.6% [[accuracy on MedQA (US Medical License Exam question]]s), [[surpassing prior state-of-the-art]] by over 17%. </s> However, [[human evaluation]] reveals key gaps in [[Flan-PaLM response]]s. </s> To [[resolve this we]] introduce [[instruction prompt tuning]], a [[parameter-efficient approach]] for aligning [[LLM]]s to new [[domain]]s using a few [[exemplar]]s. </s> The resulting [[model]], [[Med-PaLM]], [[performs encouragingly]], but remains inferior to [[clinician]]s. </s>



Latest revision as of 01:46, 28 January 2024

A Google PaLM 1 Language Model is an foundation LLM produced by Google Research.



References

2022

2022