Structured SVM Algorithm: Difference between revisions
Jump to navigation
Jump to search
m (Text replacement - "“" to "“") |
m (Text replacement - ". ----" to ". ----") |
||
Line 3: | Line 3: | ||
** a [[Hierarchical SVM]]. | ** a [[Hierarchical SVM]]. | ||
* <B>See:</B> [[Convolution Kernel]]. | * <B>See:</B> [[Convolution Kernel]]. | ||
---- | ---- | ||
---- | ---- |
Latest revision as of 23:55, 23 September 2021
A Structured SVM Algorithm is an SVM Algorithm that is a Complex Object Prediction Algorithm (can solve a Complex Object Prediction Task).
- Example(s):
- See: Convolution Kernel.
References
2009
- (Joachims et al., 2009) ⇒ Thorsten Joachims, Thomas Hofmann, Yisong Yue, and Chun-Nam Yu. (2009). “Predicting structured objects with support vector machines.” In: Communications of the ACM, 52(11). doi:10.1145/1592761.1592783.
2005
- (Tsochantaridis et al., 2005) ⇒ I. Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Y. Altun. (2005). “Large margin methods for structured and interdependent output variables.” In: Journal Machine Learning Research (JMLR), 6.
2004
- (Tsochantaridis et al., 2004) ⇒ I. Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Y. Altun. (2004). “Support vector machine learning for interdependent and structured output spaces.” In: Proceedings of the International Conference on Machine Learning (ICML 2004).