Finite-State Machine Language: Difference between revisions
Jump to navigation
Jump to search
m (Text replacement - "... " to " … ") |
m (Text replacement - ". ---- " to ". ---- ") |
||
Line 1: | Line 1: | ||
A [[Finite-State Machine Language]] is a [[formal language]] to specify [[finite-state automata]]. | A [[Finite-State Machine Language]] is a [[formal language]] to specify [[finite-state automata]]. | ||
* <B>See:</B> [[Propositional Logic Language]]. | * <B>See:</B> [[Propositional Logic Language]]. | ||
---- | ---- | ||
---- | ---- |
Latest revision as of 04:42, 17 June 2021
A Finite-State Machine Language is a formal language to specify finite-state automata.
References
2015
- (Russell, 2015) ⇒ Stuart Russell. (2015). “Unifying Logic and Probability.” In: Communications of the ACM Journal, 58(7). doi:10.1145/2699411
- QUOTE: For example, the rules of chess occupy 100 pages in first-order logic, 105 pages in propositional logic, and 1038 pages in the language of finite automata. The power comes from separating predicates from their arguments and quantifying over those arguments …