Hyperbolic Cosine Function
(Redirected from hyperbolic cosine)
Jump to navigation
Jump to search
A Hyperbolic Cosine Function is a hyperbolic function based on the cosine function.
- AKA: Hyperbolic Cosine.
- Context:
- It is defined as
- [math]\displaystyle{ \cosh x = \cos (i x)= \frac {e^x + e^{-x}} {2} }[/math]
- where [math]\displaystyle{ \cos(x) }[/math] is the cosine function, [math]\displaystyle{ \cosh(x) }[/math] is the hyperbolic cosine function, [math]\displaystyle{ e }[/math] is natural exponential function and [math]\displaystyle{ x }[/math] is a real number.
References
2015
- (Wikipedia, 2015) ⇒ http://en.wikipedia.org/wiki/Hyperbolic_function#Standard_analytic_expressions
- QUOTE:(...) Hyperbolic cosine:
[math]\displaystyle{ \cosh x = \frac {e^x + e^{-x}} {2} = \frac {e^{2x} + 1} {2e^x} = \frac {1 + e^{-2x}} {2e^{-x}} }[/math].
- (...) Hyperbolic functions can be introduced via imaginary circular angles (...):
[math]\displaystyle{ \cosh x = \cos (i x) }[/math]
1999
- (Wolfram Mathworld , 1999) ⇒ http://mathworld.wolfram.com/HyperbolicCosine.html
- QUOTE:The hyperbolic cosine is defined as
- [math]\displaystyle{ \cosh z=1/2(e^z+e^{-z}). }[/math]
- (...)This function describes the shape of a hanging cable, known as the catenary(...). Special values include [math]\displaystyle{ \cosh(0) =1, \; \cosh(\ln\phi) =1/2\sqrt{5} }[/math], where [math]\displaystyle{ \phi }[/math] is the golden ratio. The derivative is given by
- [math]\displaystyle{ \frac{d\;\cosh z}{dz}=\sinh z }[/math]
- where [math]\displaystyle{ \sinh z }[/math] is the hyperbolic sine, and the indefinite integral by
- [math]\displaystyle{ \int \cosh z\;dz=\sinh z+C }[/math]
- where [math]\displaystyle{ C }[/math] is a constant of integration.