Hierarchical Hidden Markov Model
(Redirected from hierarchical HMMs)
Jump to navigation
Jump to search
A Hierarchical Hidden Markov Model is an Hidden Markov Model that can model a Hierarchical Data Structure.
- AKA: Hierarchical HMM, HHMM.
- See: Dynamic Bayesian Network, Structured Learning Algorithm, Hierarchical Conditional Random Field.
References
2003
- (Skounakis et al., 2003) ⇒ Marios Skounakis, Mark Craven, and Soumya Ray. (2003). “Hierarchical Hidden Markov Models for Information Extraction.” In: Proceedings of IJCAI Conference (IJCAI 2003).
2001
- (Murphy & Paskin, 2001) ⇒ Kevin P. Murphy, and Mark A. Paskin. (2001). “Linear Time Inference in Hierarchical HMMs.” In: Proceedings of NIPS 2001.
1998
- (Fine et al., 1998) ⇒ Shai Fine, Yoram Singer, and Naftali Tishby. (1998). “The Hierarchical Hidden Markov Model: Analysis and applications.” In: Machine Learning, 32(1). doi:10.1023/A:1007469218079.