Potato Peeling Algorithm

From GM-RKB
(Redirected from convex skull)
Jump to navigation Jump to search

A Potato Peeling Algorithm is a Convex Hull Algorithm for finding the largest Convex Polygon within a non-convex polygon.



References

2020

  1. Goodman, Jacob E. (1981), "On the largest convex polygon contained in a nonconvex n-gon, or how to peel a potato", Geometriae Dedicata, 11 (1): 99–106, doi:10.1007/BF00183192, MR 0608164.
  2. Woo, T. (1983), The convex skull problem. As cited by Chang & Yap (1986).
  3. Chang, J. S.; Yap, C.-K. (1986), "A polynomial solution for the potato-peeling problem", Discrete and Computational Geometry, 1 (2): 155–182, doi:10.1007/BF02187692, MR 0834056.
  4. Hall-Holt, Olaf; Katz, Matthew J.; Kumar, Piyush; Mitchell, Joseph S. B.; Sityon, Arik (2006), "Finding large sticks and potatoes in polygons", Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, pp. 474–483, CiteSeerX 10.1.1.59.6770, doi:10.1145/1109557.1109610, ISBN 978-0898716054, MR 2368844.

1986

1981

  • (Goodman, 1981) ⇒ (1981). “On the Largest Convex Polygon Contained in a Non-convex n-gon, or How to Peel a Potato". In: Geometriae Dedicata, 11(1). DOI:10.1007/BF00183192.