Concave Function
(Redirected from concave function)
Jump to navigation
Jump to search
A Concave Function is a convex function upside down.
See: Convex Function, Convex Set.
References
2015
- (Wikipedia, 2015) ⇒ http://en.wikipedia.org/wiki/Concave_function
- QUOTE: In mathematics, a concave function is the negative of a convex function. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap or upper convex(...) A function [math]\displaystyle{ f }[/math] is concave over a convex set if and only if the function [math]\displaystyle{ −f }[/math] is a convex function over the set.
1999
- (Wolfram Mathworld , 1999) ⇒ http://mathworld.wolfram.com/ConcaveFunction.html
- QUOTE: A function [math]\displaystyle{ f(x) }[/math] is said to be concave on an interval [math]\displaystyle{ [a,b] }[/math] if, for any points [math]\displaystyle{ x_1 }[/math] and [math]\displaystyle{ x_2 }[/math]in </math>[a,b]</math> the function [math]\displaystyle{ -f(x) }[/math] is convex on that interval.