Yoram Singer
(Redirected from Y. Singer)
Jump to navigation
Jump to search
Yoram Singer is a person.
References
- Homepage after 2005 http://research.google.com/pubs/author28.html
- Homepage before 2005 http://www.cs.huji.ac.il/~singer/pub.html
- DBLP Page: http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Singer:Yoram.html
2013
- (Lee et al., 2013) ⇒ Joonseok Lee, Seungyeon Kim, Guy Lebanon, and Yoram Singer. (2013). “Local Low-rank Matrix Approximation.” In: Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28.
2011
- (Duchi et al., 2011) ⇒ John Duchi, Elad Hazan, and Yoram Singer. (2011). “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.” In: The Journal of Machine Learning Research, 12.
2006
- (Crammer et al., 2006) ⇒ Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. (2006). “Online Passive-Aggressive Algorithms.” In: The Journal of Machine Learning Research, 7.
2005
- (Dekel et al., 2005) ⇒ Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. (2005). “Smooth ε-Insensitive Regression by Loss Symmetrization.” In: The Journal of Machine Learning Research, 6. doi:10.1007/978-3-540-45167-9_32
- (Keshet et al., 2005) ⇒ J. Keshet, B. Shalev-Shwartz, and Yoram Singer. (2005). “Phoneme Alignment Using Large Margin Techniques.” In: Proceedings of the NIPS 2005 Workshop on the Advances in Structured Learning for Text and Speech Processing.
2004
- (Dekel et al., 2004) ⇒ O. Dekel, J. Keshet, and Yoram Singer. (2004). “Large Margin Hierarchical Classification.” In: Proceedings of ICML 2004.
2002
- (Cramer & Singer, 2002a) ⇒ Koby Crammer, and Yoram Singer. (2002). “On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines.” In: The Journal of Machine Learning Research, 2.
- (Cramer & Singer, 2002b) ⇒ Koby Crammer, and Yoram Singer. (2002). “On the Learnability and Design of Output Codes for Multiclass Problems.” In: Machine Learning, 47(2-3). doi:10.1023/A:1013637720281
- Journal paper of (Cramer & Singer, 2000)
2001
- (Allwein et al., 2001) ⇒ Erin L. Allwein, Robert E. Schapire, and Yoram Singer. (2001). “Reducing Multiclass to Binary: a unifying approach for margin classifiers.” In: The Journal of Machine Learning Research, 1. doi:10.1162/15324430152733133
- (Crammer & Singer, 2001b) ⇒ Koby Crammer, and Yoram Singer. (2001). “Ultraconservative Online Algorithms for Multiclass Problems" In: Computational Learning Theory (COLT). doi:10.1007/3-540-44581-1_7
- (Crammer & Singer, 2001a) ⇒ Koby Crammer, and Yoram Singer. (2001). “On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines.” In: The Journal of Machine Learning Research, 2.
2000
- (Collins et al., 2000) ⇒ Michael Collins, Robert E. Schapire, and Yoram Singer. (2000). “Logistic Regression, AdaBoost, and Bregman distances. Proceedings of 13th COLT. scaling for log-linear models. The Annals of Mathematical Statistics, 43, 1470–1480.
- (Schapire & Singer, 2000) ⇒ Robert E. Schapire, and Yoram Singer. (2002). “BoosTexter: A Boosting-based System for Text Categorization.” In: Machine Learning, 39(2/3).
- (Cramer & Singer, 2000) ⇒ Koby Crammer, and Yoram Singer. (2000). “On the Learnability and Design of Output Codes for Multiclass Problems.” In: Proceedings of the Thirteenth Annual Conference on Computational Learning Theory (COLT 2000)
- Associated to (Cramer & Singer, 2002b) journal paper
1999
- (Collins & Singer, 1999) ⇒ Michael Collins, and Yoram Singer. (1999). “Unsupervised Models for Named Entity Classification.” In: Proceedings of EMNLP 1999.
- (Abney et al., 1999) ⇒ Steven P. Abney, Robert E. Schapire, and Yoram Singer. (1999). “Boosting Applied to Tagging and PP Attachment.” In: Proceedings of SIGDAT ACL Conference on EMNLP-VLC.
- (Schapire & Singer, 1999) ⇒ Robert E. Schapire, and Yoram Singer. (1999). “Improved Boosting Algorithms Using Confidence-rated Predictions.” In: Machine Learning, 37(3). doi:10.1023/A:1007614523901
1998
- (Schapire & Singer, 1998) ⇒ Robert E. Schapire and Yoram Singer. (1998). “Improved Boosting Algorithms Using Confidence-Rated Predictions.” In: Proceeings of 11th Ann. Conference Computational Learning Theory (COLT 1998).
- (Fine et al., 1998) ⇒ Shai Fine, Yoram Singer, and Naftali Tishby. (2008). “The Hierarchical Hidden Markov Model: Analysis and applications.” In: Machine Learning, 32(1). doi:10.1023/A:1007469218079.
1996
- (Cohen & Singer, 1996) ⇒ William W. Cohen, and Yoram Singer. (1996). “Context-Sensitive Learning Methods for Text Categorization.” In: Proceedings of the 19th ACM SIGIR Conference (SIGIR 1996). doi:10.1145/243199.243278