WikiText Math Statement

From GM-RKB
Jump to navigation Jump to search

A WikiText Math Statement is a mathematical statement expressed in a wikitext.

  • Example(s):
N(k) \dot \sum^{k}_{j=1}\frac{2^{r(j)}-1}{log(1+j)} [math]\displaystyle{ N(k) \bullet \sum^{k}_{j=1}\frac{2^{r(j)}-1}{log(1+j)} }[/math]
\implies x \land \lnot y \equiv a \lor b \impliedby [math]\displaystyle{ \implies x \land \lnot y \equiv a \lor b \impliedby }[/math]
p(y_t, y_{t+1}, ..., y_{t+k} \mid \mathbf{x}) [math]\displaystyle{ p(y_t, y_{t+1}, ..., y_{t+k} \mid \mathbf{x}) }[/math]
^a_bx^c_d [math]\displaystyle{ ^a_bx^c_d }[/math]
\sum_{n=1}^\infty; \prod_{j=1}^n; \intop_a^b [math]\displaystyle{ \sum_{n=1}^\infty }[/math]; [math]\displaystyle{ \prod_{j=1}^n }[/math]; [math]\displaystyle{ \intop_a^b }[/math]
\underset{x}{\operatorname{arg\,max}} \, f(x) := \{x\ \vert \ \forall y : f(y) \le f(x)\} [math]\displaystyle{ \underset{x}{\operatorname{arg\,max}} \, f(x) := \{x\ \vert \ \forall y : f(y) \le f(x)\} }[/math]
\underbrace{x+\cdots+x}_{n\text{ times}} [math]\displaystyle{ \underbrace{x+\cdots+x}_{n\text{ times}} }[/math]
\begin{eqnarray} y &=& (x-1)^2 \\ &=& x^2 - 2x + 1 \end{eqnarray} [math]\displaystyle{ \begin{eqnarray} y &=& (x-1)^2 \\ &=& x^2 - 2x + 1 \end{eqnarray} }[/math]
\begin{bmatrix} aaa & b\cr c & ddd \end{bmatrix} [math]\displaystyle{ \begin{bmatrix} aaa & b\cr c & ddd \end{bmatrix} }[/math]
A \cup B \subseteq C \subset D \cap E [math]\displaystyle{ A \cup B \subseteq C \subset D \cap E }[/math]
v \left\lbrace m \ln \left( \frac{1}{m} \sum_{j=k}^{n} \lambda_j \right) - \sum_{j=k}^{n} \ln(\lambda_j) \right\rbrace</math> [math]\displaystyle{ v \left\lbrace m \ln \left( \frac{1}{m} \sum_{j=k}^{n} \lambda_j \right) - \sum_{j=k}^{n} \ln(\lambda_j) \right\rbrace }[/math]
\Pr(w_t \mid c_j; \hat{\theta}) \log \left( \frac{\Pr(w_t \mid \lnot c_j; \hat{\theta})} {\Pr(w_t \mid c_j; \hat{\theta})} \right), [math]\displaystyle{ \Pr(w_t \mid c_j; \hat{\theta}) \log \left( \frac{\Pr(w_t \mid \lnot c_j; \hat{\theta})} {\Pr(w_t \mid c_j; \hat{\theta})} \right), }[/math]
f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} [math]\displaystyle{ f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} }[/math]
[math]\displaystyle{ }[/math]
[math]\displaystyle{ }[/math]
\ll, \lt, \le, \preceq, =, \neq, \triangleq, \gt, \ge, \gg [math]\displaystyle{ \ll, \lt, \le, \preceq, =, \neq, \triangleq, \gt, \ge, \gg }[/math]
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} [math]\displaystyle{ \sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} }[/math]
\Biggl[ \biggl( \Bigl[ \bigl( \lbrack \lbrace \langle \matrix{a & b\cr c & d} \rangle \rbrace \rbrack \bigl) \Bigl] \biggl) \Biggl] [math]\displaystyle{ \Biggl[ \biggl( \Bigl[ \bigl( \lbrack \lbrace \langle \matrix{a & b\cr c & d} \rangle \rbrace \rbrack \bigl) \Bigl] \biggl) \Biggl] }[/math]
\leftleftarrows ,\Leftarrow, \leftarrow, \dashleftarrow, \downarrow, \Downarrow, \leftrightarrow, \Leftrightarrow, \curvearrowleft, \Uparrow, \uparrow, \dashrightarrow, \leftrightharpoons, \circlearrowright, \rightarrow, \Rightarrow, \hookrightarrow, \longmapsto [math]\displaystyle{ \leftleftarrows, \Leftarrow, \leftarrow, \dashleftarrow, \downarrow, \Downarrow, \leftrightarrow, \Leftrightarrow, \curvearrowleft, \Uparrow, \uparrow, \dashrightarrow, \leftrightharpoons, \circlearrowright, \rightarrow, \Rightarrow, \hookrightarrow, \longmapsto }[/math]
\vdash, \nvdash, \Vdash, \nVdash, \vDash [math]\displaystyle{ \vdash, \nvdash, \Vdash, \nVdash, \vDash }[/math]
\mid, \parallel, \nparallel, \nshortparallel, \nshortmid [math]\displaystyle{ \mid, \parallel, \nparallel, \nshortparallel, \nshortmid }[/math]
\alpha,\beta,\chi,\delta,\epsilon,\eta,\gamma,\iota,\kappa,\lambda,\mu,\nu,\omega,\phi,\pi,\rho,\sigma,\tau,\theta,\xi,\zeta

\Alpha,\Beta,\Chi,\Delta,\Epsilon,\Eta,\Gamma,\Iota,\Kappa,\Lambda,\Mu,\Nu,\Omega,\Phi,\Pi,\Rho,\Sigma,\Tau,\Theta,\Xi,\Zeta \varepsilon, \digamma, \vartheta, \varkappa, \varpi, \varrho, \varsigma, \varphi

[math]\displaystyle{ \alpha,\beta,\chi,\delta,\epsilon,\eta,\gamma,\iota,\kappa,\lambda,\mu,\nu,\omega,\phi,\pi,\rho,\sigma,\tau,\theta,\xi,\zeta }[/math]

[math]\displaystyle{ \Alpha,\Beta,\Chi,\Delta,\Epsilon,\Eta,\Gamma,\Iota,\Kappa,\Lambda,\Mu,\Nu,\Omega,\Phi,\Pi,\Rho,\Sigma,\Tau,\Theta,\Xi,\Zeta }[/math] [math]\displaystyle{ \varepsilon, \digamma, \vartheta, \varkappa, \varpi, \varrho, \varsigma, \vartheta, \varphi }[/math]

A a B b ... L l ... O ... U V W X Y Z [math]\displaystyle{ A a B b \ ... L l \ ... O \ ... U V W X Y Z }[/math]
\mathit{A} \mathit{a} \mathit{B} \mathit{b} ... \mathit{L} \mathit{l} ... \mathit{O} ... \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} [math]\displaystyle{ \mathit{A} \mathit{a} \mathit{B} \mathit{b} \ ... \mathit{L} \mathit{l} \ ... \mathit{O} ... \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} }[/math]
\mathcal{A} \mathcal{a} \mathcal{B} \mathcal{b} ... \mathcal{L} \mathcal{l} ... \mathcal{O} ... \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} [math]\displaystyle{ \mathcal{A} \mathcal{a} \mathcal{B} \mathcal{b} \ ... \mathcal{L} \mathcal{l} \ ... \mathcal{O} ... \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} }[/math]
\mathscr{A} \mathscr{a} \mathscr{B} \mathscr{b} ... \mathscr{L} \mathscr{l} ... \mathscr{O} ... \mathscr{U} \mathscr{V} \mathscr{W} \mathscr{X} \mathscr{Y} \mathscr{Z} [math]\displaystyle{ \mathscr{A} \mathscr{a} \mathscr{B} \mathscr{b} \ ... \mathscr{L} \mathscr{l} \ ... \mathscr{O} ... \mathscr{U} \mathscr{V} \mathscr{W} \mathscr{X} \mathscr{Y} \mathscr{Z} }[/math]
\mathbf{x}, {\bf x}, \vec{x}, \mathbf{y}, \vec{y}, {\bf y}, \mathbf{z}, {\bf z}, \vec{z} [math]\displaystyle{ \mathbf{x}, {\bf x}, \vec{x}, \mathbf{y}, \vec{y}, {\bf y}, \mathbf{z}, {\bf z}, \vec{z} }[/math]
\empty [math]\displaystyle{ \empty }[/math]
\checkmark [math]\displaystyle{ \checkmark }[/math]
\P [math]\displaystyle{ \P }[/math]
\C, \mathbb{C} [math]\displaystyle{ \C, \mathbb{C} }[/math] (complex numbers)
\N, \mathbb{N} [math]\displaystyle{ \N, \mathbb{N} }[/math] (natural numbers)
\Q, \mathbb{Q} [math]\displaystyle{ \Q, \mathbb{Q} }[/math] (rational numbers)
\R, \mathbb{R} [math]\displaystyle{ \R, \mathbb{R} }[/math] (real numbers
\Z, \mathbb{Z} [math]\displaystyle{ \Z, \mathbb{Z} }[/math] (integer numbers
\F, \mathbb{F} [math]\displaystyle{ \F, \mathbb{F} }[/math] (a finite field)
\HH, \mathcal{H} [math]\displaystyle{ \HH, \mathcal{H} }[/math] (a Hilbert space)
   X =
   \begin{cases}
     0, & \text{if}\ a=1 \\
     1, & \text{otherwise}
   \end{cases}  
[math]\displaystyle{ X = \begin{cases} 0, & \text{if}\ a=1 \\ 1, & \text{otherwise} \end{cases} }[/math]
\lfloor\frac{\gamma}{2} \le \frac{\phi}{2} \rceil [math]\displaystyle{ \lfloor\frac{\gamma}{2} \le \frac{\phi}{2} \rceil }[/math]
\bszero \boldsymbol{0}; \bsone \boldsymbol{1} [math]\displaystyle{ \bszero }[/math] (vector of zeros); [math]\displaystyle{ \bsone }[/math] (vector of ones)
\bst \boldsymbol{t}; \bsv \boldsymbol{v}; \bsw \boldsymbol{w};
\bsx \boldsymbol{x}; \bsy \boldsymbol{y}; \bsz \boldsymbol{z}
[math]\displaystyle{ \bst, \bsv, \bsw, \bsx, \bsy, \bsz }[/math]
\bsDelta: \boldsymbol{\Delta} \bigtriangledown \triangledown V(\underline{x}) [math]\displaystyle{ \bsDelta: }[/math] (vector [math]\displaystyle{ \Delta }[/math]) [math]\displaystyle{ \bigtriangledown \triangledown V(\underline{x}) }[/math]
\E [math]\displaystyle{ \E }[/math] (the exponential)
\rd x [math]\displaystyle{ \rd x }[/math] (roman d for use in integrals, e.g. [math]\displaystyle{ \int f(x) \rd x }[/math])
\text{Prerequisite : Justification}_1, \dots , \text{Justification}_n [math]\displaystyle{ \frac{\text{Prerequisite : Justification}_1, \dots , \text{Justification}_n}{\text{Conclusion}} }[/math]
\hat{o}, \widehat{oo}, \check{o}, \tilde{o}, \widetilde{oo}, \acute{o}, \grave{o}, \dot{o}, \ddot{o}, \breve{o}, \bar{o}, \vec{o}, \hat{\imath}, \vec{\jmath} [math]\displaystyle{ \hat{o}, \widehat{oo}, \check{o}, \tilde{o}, \widetilde{oo}, \acute{o}, \grave{o}, \dot{o}, \ddot{o}, \breve{o}, \bar{o}, \vec{o}, }[/math]
[math]\displaystyle{ \hat{\imath}, \vec{\jmath} }[/math] (accents).
\sqrt[5]{2x} [math]\displaystyle{ \sqrt[5]{2x} }[/math] (roots).


References