Welch's t-Statistic
(Redirected from Welch's t-test statistic)
Jump to navigation
Jump to search
A Welch's t-Statistic is a test statistic used in a Welch's t-test.
- AKA: Unpooled Variance t-Test Statistic.
- Context:
- Input:
- [math]\displaystyle{ \hat{\theta}_1 }[/math] : a point estimate based on the first sample.
- [math]\displaystyle{ \hat{\theta}_2 }[/math] : a point estimate based on the second sample.
- [math]\displaystyle{ s_w }[/math] : samples unpooled standard deviation.
- [math]\displaystyle{ D = \theta_1 - \theta_2 }[/math] : a constant based on the difference between each population parameters (estimands theoretical or hypothesized numerical values).
- Output:
- [math]\displaystyle{ t }[/math]: a numerical value produced by the Welch's t-Statistic Calculating System.
- Mathematical Expression: [math]\displaystyle{ t=\frac{(\hat{\theta}_1-\hat{\theta}_2)-D}{s_w} }[/math]
- It can be interpreted as a modification of Independent Two-Sample t-Test Statistic when Population Variances are not equal.
- Input:
- Example(s):
- A Welch's t-statistic for testing the null hypothesis "populations means are equal across two groups, i.e [math]\displaystyle{ \mu_1=\mu_2 }[/math]" is
- [math]\displaystyle{ t= \frac{(\overline{x}_1-\overline{x}_2)}{s_w} }[/math]
- where [math]\displaystyle{ \overline{x}_1,\overline{x}_2 }[/math] are the individual sample mean values and [math]\displaystyle{ D=\mu_1-\mu_2 = 0 }[/math].
- …
- Counter-Example(s):
- See: Student's t-Test, t-Statistic, Pooled Standard Deviation, Welch–Satterthwaite Equation.
References
2017
- (Wikipedia, 2017A) ⇒ https://en.wikipedia.org/wiki/Welch's_t-test# Retrieved:2016-9-14.
- Welch's t-test defines the statistic t by the following formula:
- [math]\displaystyle{ t \quad = \quad {\; \overline{X}_1 - \overline{X}_2 \; \over \sqrt{ \; {s_1^2 \over N_1} \; + \; {s_2^2 \over N_2} \quad }}\, }[/math]
- where [math]\displaystyle{ \overline{X}_1 }[/math], [math]\displaystyle{ s_1^2 }[/math] and [math]\displaystyle{ N_1 }[/math] are the 1st sample mean, sample variance and sample size, respectively. Unlike in Student's t-test, the denominator is not based on a pooled variance estimate.
- The degrees of freedom [math]\displaystyle{ \nu }[/math] associated with this variance estimate is approximated using the Welch–Satterthwaite equation:
- [math]\displaystyle{ \nu \quad \approx \quad {{\left( \; {s_1^2 \over N_1} \; + \; {s_2^2 \over N_2} \; \right)^2 } \over { \quad {s_1^4 \over N_1^2 \nu_1} \; + \; {s_2^4 \over N_2^2 \nu_2 } \quad }} }[/math]
- Here [math]\displaystyle{ \nu_1 = N_1-1 }[/math], the degrees of freedom associated with the first variance estimate. [math]\displaystyle{ \nu_2 = N_2-1 }[/math], the degrees of freedom associated with the 2nd variance estimate.
- Welch's t-test can also be calculated for ranked data and might then be named Welch's U-test.[1]
2017b
- (SPSS,2017) ⇒ http://libguides.library.kent.edu/SPSS/IndependentTTest
- When the two independent samples are assumed to be drawn from populations with unequal variances (i.e., [math]\displaystyle{ \sigma_{12}\neq\;\sigma_{22} }[/math]), the test statistic t is computed as:
- [math]\displaystyle{ t= \frac{\overline{x}_1-\overline{x}_2}{\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}} }[/math]
- where
- [math]\displaystyle{ \overline{x}_1 }[/math]= Mean of first sample
- [math]\displaystyle{ \overline{x}_1 }[/math] = Mean of second sample
- [math]\displaystyle{ n_1 }[/math] = Sample size (i.e., number of observations) of first sample
- [math]\displaystyle{ n_1 }[/math] = Sample size (i.e., number of observations) of second sample
- [math]\displaystyle{ s_1 }[/math] = Standard deviation of first sample
- [math]\displaystyle{ s_1 }[/math] = Standard deviation of second sample
- ↑ Fagerland, M. W.; Sandvik, L. (2009). "Performance of five two-sample location tests for skewed distributions with unequal variances". Contemporary Clinical Trials 30: 490–496. doi:10.1016/j.cct.2009.06.007.